1.群论的基本定义和结果,包括乘法表、子群、同态、陪集、正规子群、核、商、直积、交换群和元素的顺序。
群论的范围包括代数、拓扑和李群以及它们的线性表示。
1.1 Definitions and examples(定义和例子)-介绍了群的基本定义和一些例子。
1.2 Multiplication tables(乘法表)-讨论了群的乘法表。
1.3 Subgroups(子群)-介绍了子群的概念。
1.4 Groups of small order (小阶群)-讨论了阶数较小的群。
1.5 Homomorphisms(同态)-介绍了群同态的概念。
1.6 Cosets(陪集)-讨论了陪集的概念。
1.7 Normal subgroups(正规子群)-介绍了正规子群的概念。
1.8 Kernels and quotients (核与商群)-讨论了同态的核和商群。
1.9 Theorems concerning homomorphisms(关于同态的定理)-介绍了一些关于群同态的重要定理。
1.10 Direct products (直积)-讨论了群的直积。
1.11 Commutative groups(交换群)-介绍了交换群的概念。
1.12 The order of ab (ab的阶)-讨论了元素乘积的阶。
2.Free Groups and Presentations; Coxeter Groups(自由群和表示;Coxeter 群)
从自由幺半群到Coxeter 群的基本定义、性质和例子
2.1 Free Monoids (自由幺半群)
定义:自由幺半群是由一组生成元和连接操作构成的结构,没有任何关系约束。
性质:自由幺半群的元素可以表示为生成元的有限序列,连接操作是序列的连接。
2.2 Free Groups(自由群)
定义:自由群是由一组生成元和其逆元构成的群,没有任何关系约束。
性质:自由群的元素可以表示为生成元及其逆元的有限序列,满足群的运算规则。
例子:给定生成元集合 S S S,自由群 F ( S ) F(S) F(S)包含所有由 S S S中元素及其逆元构成的有限序列。
2.3 Generators and Relations(生成元和关系)
定义:群的表示是通过生成元和关系来描述群的结构。
表示:一个群 G G G可以表示为 ⟨ S ∣ R ⟩ \langle S|R \rangle ⟨S∣R⟩,其中 S S S是生成元集合, R R R是关系集合。
例子:循环群 Z / n Z \mathbb{Z}/n\mathbb{Z} Z/nZ可以表示为 ⟨ a ∣ a n = 1 ⟩ \langle a| a^n = 1\rangle ⟨a∣an=1⟩。
2.4 Finitely Presented Groups(有限表示群)
定义:有限表示群是通过有限个生成元和有限个关系来描述的群。
例子:二面体群 D n D_n Dn可以表示为 ⟨ r , s ∣ r n = 1 , s 2 = 1 , s r s = r − 1 ⟩ \langle r, s|r^n = 1, s^2 = 1, srs = r^{-1} \rangle ⟨r,s∣rn=1,s2=1,srs=r−1⟩。
2.5 Coxeter Groups (Coxeter 群)
定义:Coxeter 群是通过生成元和特定的关系(通常涉及生成元的平方等于单位元)来定义的群。
性质:Coxeter 群在几何和代数中有重要应用,特别是在对称性和反射群的研究中。
例子:对称群 S n S_n Sn是一个典型的 Coxeter 群。
3.Homomorphisms, Kernels, and Quotients(同态、核和商群)
群的同态、核、像、同构定理等,从群同态到商群的基本定义、性质和例子
3.1 Homomorphisms(同态)
定义:群同态是两个群之间的映射 ϕ : G → H \phi:G \to H ϕ:G→H,满足 ϕ ( g 1 g 2 ) = ϕ ( g 1 ) ϕ ( g 2 ) \phi(g_1g_2) = \phi(g_1)\phi(g_2) ϕ(g1g2)=ϕ(g1)ϕ(g2)对所有 g 1 , g 2 ∈ G g_1,g_2 \in G g1,g2∈G成立。
性质:同态保持群的运算结构。
例子:映射 ϕ : Z → Z / n Z \phi: \mathbb{Z}\to \mathbb{Z}/n\mathbb{Z} ϕ:Z→Z/nZ定义为 ϕ ( k ) = k m o d n \phi(k) = k \mod n ϕ(k)=kmodn是一个群同态。
3.2 Kernels and lmages(核和像)
核:同态 ϕ : G → H \phi: G \to H ϕ:G→H的核是 ker ( ϕ ) = { g ∈ G ∣ ϕ ( g ) = e H } \ker(\phi) = \{ g\in G| \phi(g) = e_H\} ker(ϕ)={
g∈G∣ϕ(g)=eH},其中 e H e_H eH是 H H H的单位元。
像:同态 ϕ : G → H \phi: G \to H ϕ:G→H的像是 lm ( ϕ ) =