群论的知识体系

1.群论的基本定义和结果,包括乘法表、子群、同态、陪集、正规子群、核、商、直积、交换群和元素的顺序。

群论的范围包括代数、拓扑和李群以及它们的线性表示。

1.1 Definitions and examples(定义和例子)-介绍了群的基本定义和一些例子。

1.2 Multiplication tables(乘法表)-讨论了群的乘法表。

1.3 Subgroups(子群)-介绍了子群的概念。

1.4 Groups of small order (小阶群)-讨论了阶数较小的群。

1.5 Homomorphisms(同态)-介绍了群同态的概念。

1.6 Cosets(陪集)-讨论了陪集的概念。

1.7 Normal subgroups(正规子群)-介绍了正规子群的概念。

1.8 Kernels and quotients (核与商群)-讨论了同态的核和商群。

1.9 Theorems concerning homomorphisms(关于同态的定理)-介绍了一些关于群同态的重要定理。

1.10 Direct products (直积)-讨论了群的直积。

1.11 Commutative groups(交换群)-介绍了交换群的概念。

1.12 The order of ab (ab的阶)-讨论了元素乘积的阶。

2.Free Groups and Presentations; Coxeter Groups(自由群和表示;Coxeter 群)

从自由幺半群到Coxeter 群的基本定义、性质和例子

2.1 Free Monoids (自由幺半群)

定义:自由幺半群是由一组生成元和连接操作构成的结构,没有任何关系约束。
性质:自由幺半群的元素可以表示为生成元的有限序列,连接操作是序列的连接。

2.2 Free Groups(自由群)

定义:自由群是由一组生成元和其逆元构成的群,没有任何关系约束。
性质:自由群的元素可以表示为生成元及其逆元的有限序列,满足群的运算规则。
例子:给定生成元集合 S S S,自由群 F ( S ) F(S) F(S)包含所有由 S S S中元素及其逆元构成的有限序列。

2.3 Generators and Relations(生成元和关系)

定义:群的表示是通过生成元和关系来描述群的结构。
表示:一个群 G G G可以表示为 ⟨ S ∣ R ⟩ \langle S|R \rangle SR,其中 S S S是生成元集合, R R R是关系集合。
例子:循环群 Z / n Z \mathbb{Z}/n\mathbb{Z} Z/nZ可以表示为 ⟨ a ∣ a n = 1 ⟩ \langle a| a^n = 1\rangle aan=1

2.4 Finitely Presented Groups(有限表示群)

定义:有限表示群是通过有限个生成元和有限个关系来描述的群。
例子:二面体群 D n D_n Dn可以表示为 ⟨ r , s ∣ r n = 1 , s 2 = 1 , s r s = r − 1 ⟩ \langle r, s|r^n = 1, s^2 = 1, srs = r^{-1} \rangle r,srn=1,s2=1,srs=r1

2.5 Coxeter Groups (Coxeter 群)

定义:Coxeter 群是通过生成元和特定的关系(通常涉及生成元的平方等于单位元)来定义的群。
性质:Coxeter 群在几何和代数中有重要应用,特别是在对称性和反射群的研究中。
例子:对称群 S n S_n Sn是一个典型的 Coxeter 群。

3.Homomorphisms, Kernels, and Quotients(同态、核和商群)

群的同态、核、像、同构定理等,从群同态到商群的基本定义、性质和例子

3.1 Homomorphisms(同态)

定义:群同态是两个群之间的映射 ϕ : G → H \phi:G \to H ϕ:GH,满足 ϕ ( g 1 g 2 ) = ϕ ( g 1 ) ϕ ( g 2 ) \phi(g_1g_2) = \phi(g_1)\phi(g_2) ϕ(g1g2)=ϕ(g1)ϕ(g2)对所有 g 1 , g 2 ∈ G g_1,g_2 \in G g1,g2G成立。
性质:同态保持群的运算结构。
例子:映射 ϕ : Z → Z / n Z \phi: \mathbb{Z}\to \mathbb{Z}/n\mathbb{Z} ϕ:ZZ/nZ定义为 ϕ ( k ) = k m o d    n \phi(k) = k \mod n ϕ(k)=kmodn是一个群同态。

3.2 Kernels and lmages(核和像)

核:同态 ϕ : G → H \phi: G \to H ϕ:GH的核是 ker ⁡ ( ϕ ) = { g ∈ G ∣ ϕ ( g ) = e H } \ker(\phi) = \{ g\in G| \phi(g) = e_H\} ker(ϕ)={ gGϕ(g)=eH},其中 e H e_H eH H H H的单位元。
像:同态 ϕ : G → H \phi: G \to H ϕ:GH的像是 lm ( ϕ ) =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值