为什么用样本方差估计总体方差的统计量除以n-1

当总体方差未知时,样本方差除以n-1而不是n来估计总体方差,因为后者是无偏估计。在期望已知和未知的情况下,通过数学推导证明了除以n-1的合理性,确保样本方差的期望值等于总体方差。
摘要由CSDN通过智能技术生成

1、结论

1 n ∑ i = 1 n ( X i − X ˉ ) 2 \frac{1}{n}\sum_{i=1}^{n}(X_i-\bar{X})^2 n1i=1n(XiXˉ)2有偏估计

1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 \frac{1}{n-1}\sum_{i=1}^{n}(X_i-\bar{X})^2 n11i=1n(XiXˉ)2无偏估计
\\

2、期望已知,方差未知

随机变量 X X X的均值已知为 μ {\mu} μ,总体方差 σ 2 {\sigma^2} σ2未知。根据方差的定义,可知:
σ 2 = 1 N ∑ i = 1 N ( X i − μ ) 2 {\sigma^2}=\frac{1}{N}\sum_{i=1}^{N}(X_i-\mu)^2 σ2=N1i=1N(Xiμ)2
其中 N N N是总体个数,从总体中抽样 n n n个样本,对于不同的抽样结果,计算出的样本方差不等,但样本方差的期望等于总体方差,故有:
σ 2 = E [ 1 n ∑ i = 1 n ( X i − μ ) 2 ] (1) \sigma^2=E[\frac{1}{n}\sum_{i=1}^{n}(X_i-\mu)^2]\tag1 σ2=E[n1i=1n(Xiμ)2](1)

3、期望未知,方差未知

但实际情况下,总体的均值并不易得知,非常直接的想法就是用样本均值代替总体均值,那么替代后(1)式是否仍然成立呢?做如下推导:
E [ 1 n ∑ i = 1 n ( X i − X ˉ ) 2 ] = E [ 1 n ∑ i = 1 n ( ( X i − μ ) − ( X ˉ − μ ) ) 2 ] = E [ 1 n ∑ i = 1 n ( ( X i − μ ) 2 − 2 ( X i − μ ) ( X ˉ − μ ) + ( X ˉ − μ ) 2 ) ] = E [ 1 n ∑ i = 1 n ( X i − μ ) 2 − 2 ( X ˉ − μ ) n ∑ i = 1 n ( X i − μ ) + ( X ˉ − μ ) 2 n ∑ i = 1 n 1 ] = E [ 1 n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值