目前人工智能的概念层出不穷,容易搞混,理清脉络,有益新知识入脑。
为便于梳理,本文只有提纲,且笔者准备仓促,敬请勘误,不甚感激。
请看右边目录索引 。
人工智能
三大派系
符号主义(Symbolists) 基于逻辑推理的智能模拟方法。最喜欢的算法是:规则和决策树。符号主义的代表性成果有启发式程序、专家系统、知识工程等,IBM“深蓝”计算机为典型应用。
连接主义(Connectionist) 使用概率矩阵和加权神经元来动态地识别和归纳模式,奠基人是明斯基(MIT),发展最火是深度学习,深度神经网络,ChatGPT为典型应用。
行为主义(actionism) 其原理为控制论及感知-动作型控制系统。擅长于使用遗传算法(Genetic Algorithm,GA)和遗传编程。行为主义的代表性成果有六足行走机器人、波士顿动力机器人等。
还有五派分法,笔者本人未弄清内部逻辑,感觉无法和本文的体系融体,未列出。
三大分支
- 认知AI(cognitive AI)
- 机器学习(Machine Learning AI)
- 深度学习(Deep Learning) : 是一种特殊的机器学习。
2016年Alpha Go打败了李世石,确立了深度学习正在机器学习领域中的霸主地位
核心技术与领域
- 机器学习(Machine learning)
- 深度学习(Deep learning)
- 计算机视觉(Computer Vision) 图像识别、目标检测、图像分割、人脸识别等技;模型有CNN、FCN、RCNN 等
- 自然语言处理(Natural Language Processing, NLP) 语音识别、文本分类、信息抽取、机器翻译等多个方面,模型RNN、LSTM、transformer等
- 自动规划和决策:自动规划和决策涉及开发能够自主感知环境并作出决策的算法和系统,它可以应用于无人驾驶汽车、物流规划、智能机器人等领域
还有诸如:机器人、专家系统、智能搜索、自动程序设计等</