【更新至2022】上市公司投资效率-Richardson模型(代码+数据)

更新!【更新至2022】上市公司投资效率-Richardson模型(代码+数据)

更新时间:2023年5月23日
处理软件:Stata16
样本区间:2002-
2022(可根据需要自行调整)
观测值:45079

数据说明:本数据上市公司非
效率投资数据-Richardson模型(Richardson, 2006),附件
包含全部Stata处理代码do文件和最终处理数据。按照下文公式(详见下文模型)进
行OLS回归,模型估计的残差绝对值(AbsINV)即为公司非效率投资程度,Abs
INV越大,非效率投资的程度越高,即投资效率越低。残差为正属于过度投资(Over
INV),残差为负属于投资不足(UnderINV)。

模型说明:


样本筛选
(可根据需要自行调整):

1.仅保留沪深两市A股上市公司;

2.剔除金融行业上市
公司;

3.剔除ST、PT样本;

4.剔除分年度分行业回归观测值小于10的样本;


5.连续变量在1,99百分位进行缩尾处理;
根据2012年证监会行业标准进行划
分,制造业“C”取 2 位,其他行业取1位

补充说明:


模型设定存在各种形
式上的变化(可根据具体情况进行调整),具体如下:


(1)Invest变量构成存
在差异,如是否加入并购支出与研发支出,是否考虑折旧摊销等;


(2)回归模型变量
的选择存在差异,如是否需要加入负债率等;


(3)回归变量的计算存在差异,如Ca
sh的计算也有使用经营活动现金流量净额、Growth也有使用托宾Q、Age使用公
司年龄等;


(4)回归方式存在差异,如整体回归还是分年度回归等;


(5)回归
模型存在差异,如OLS回归还是GMM回归等;


(6)样本存在差异,如2000-
2020还是2007-2020等。


描述性统计:

variable    N    m
ean    sd    min    p50    max
UnderINV    45079    0.625    
0.484    0    1    1
OverINV    45079    0.375    0.484    0    
0    1

各年度观测值:

年份    Freq.    Percent    Cum.
2000
    774    
1.72    
1.72
2001    865    
1.92    
3.64
2002    9
95    
2.21    
5.84
2003    1,069    
2.37    
8.21
2004    1
,129    
2.5    10.72
2005    1,177    
2.61    1
3.33
200
6    1,265    
2.81    1
6.14
2007    1,269    
2.82    1
8.95

2008    1,315    
2.92    2
1.87
2009    1,410    
3.13    2
5
2010    1,486    
3.3    2
8.29
2011    1,565    
3.47    3

1.76
2012    1,907    
4.23    3
5.99
2013    2,179    
4.
83    40.83
2014    2,345    
5.2    4
6.03
2015    2,347
    
5.21    5
1.24
2016    2,456    
5.45    5
6.68
2017    2
,665    
5.91    6
2.6
2018    2,860    
6.34    6
8.94
201
9    3,272    
7.26    7
6.2
2020    3,344    
7.42    8
3.62

2021    3,519    
7.81    9
1.42
2022    3,866    
8.58    10
0
Total    45,079    100    

代码数据展示:
 


【更多帖子链接
】:点击此处
   

下载链接:https://download.csdn.net/download/weixin_45892228/89147138

点击下载:【更新至2022】上市公司投资效率-Richardson模型(代码+数据)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值