双语矩阵论课程笔记(3)—— 【chapter 2】 Inner Product Spaces

  • vector space/Linear space 中,向量之间的运算只有加法和数(统称线性运算),但是,如果以解析几何中的三维空间 R 3 \mathbb{R}^3 R3 作为线性空间的一个模型,我们会发现 R 3 \mathbb{R}^3 R3 诸如向量长度、向量夹角等度量概念无法在 Linear space 中得到反映。为此,有必要在一般的 Linear space 中引进 inner product 內积运算,这样就导出了 Inner product spaces 內积空间的概念

1. Inner product spaces

1.1 inner product (內积)

  • Definition:Let V V V a vector space over filed P P P, α , β ∈ V \alpha,\beta\in V α,βV. If there is an operation ( ⋅ , ⋅ ) (·,·) (,) from V V V to P P P satisfying the following rules

    1. 对称性: ( α , β ) = ( β , α ) (\alpha,\beta) = (\beta,\alpha) (α,β)=(β,α)
    2. 可加性: ( α + β , γ ) = ( α , γ ) + ( β , γ ) (\alpha+\beta,\gamma) = (\alpha,\gamma)+(\beta,\gamma) (α+β,γ)=(α,γ)+(β,γ)
    3. 齐次性: ( k α , β ) = k ( α , β ) (k\alpha,\beta) = k(\alpha,\beta) (kα,β)=k(α,β)
    4. 非负性: ( α , α ) ≥ 0 (\alpha,\alpha)\geq 0 (α,α)0 α = 0 ⇔ ( α , α ) = 0 \alpha=0 \Leftrightarrow (\alpha,\alpha)=0 α=0(α,α)=0

    then ( α , β ) (\alpha,\beta) (α,β) is the inner product of α \alpha α and β \beta β

  • V V V 的一组基来表示 α , β \alpha,\beta α,β, 利用上述性质把连加的内积拆开,有
    在这里插入图片描述
    其中 y H y^H yH 是向量 y y y 的共轭转置。可见矩阵 A A A 和使用的基 ε i \varepsilon_i εi 是一一对应的,当基选用标准正交基时, A A A 矩阵最简单,为单位阵,详见第 2 节

1.2 inner product space (內积空间)

  • 內积空间其实就是向量空间/线性空间的基础上加了一个內积运算
  • Definition:Let V V V a vector space over filed P P P with inner product operation, then V V V is called an inner product space on P P P
  • Special case
    1. if P = R P=R P=R, V V V is called Euclid space(欧氏空间)
    2. if P = C P=C P=C, V V V is called Unitary space(酉空间)
  • In inner product space, the following properties hold
    1. ( α , β + γ ) = ( α , β ) + ( α , γ ) (\alpha,\beta+\gamma) = (\alpha,\beta)+(\alpha,\gamma) (α,β+γ)=(α,β)+(α,γ)
    2. ( α , k β ) = k ˉ ( α , β ) (\alpha,k\beta) = \bar{k}(\alpha,\beta) (α,kβ)=kˉ(α,β)(从第二个元提常数需要变成共轭, k ˉ \bar{k} kˉ k k k 的共轭)
    3. ( α , 0 ) = ( 0 , α ) = 0 (\alpha,\pmb{0}) = (\pmb{0},\alpha) = 0 (α,000)=(000,α)=0

1.3 More Notion in inner product space

1.3.1 Length of vector

  • Definition:Suppose that V V V is an inner product space, The length of vector α ∈ V \alpha \in V αV is
    ∥ α ∥ = ( α , α ) \Vert \alpha \Vert = \sqrt{(\alpha,\alpha)} α=(α,α)
    The vector of length 1 is called a unit vector

  • For any α , β ∈ V \alpha,\beta\in V α,βV, the length ∥ α ∥ \Vert \alpha \Vert α satisfies the following properties

    1. ∥ α ∥ ≥ 0 \Vert\alpha\Vert\geq 0 α0 and α = 0 ⇔ ∥ α ∥ = 0 \alpha=0 \Leftrightarrow \Vert\alpha\Vert=0 α=0α=0
    2. ∥ k α ∥ = ∣ k ∣ ∥ α ∥ \Vert k\alpha\Vert = |k|\Vert\alpha\Vert kα=kα for any k ∈ P k\in P kP
    3. ∥ α + β ∥ 2 + ∥ α − β ∥ 2 = 2 ( ∥ α ∥ 2 + ∥ β ∥ 2 ) \Vert \alpha+\beta\Vert^2+\Vert \alpha-\beta\Vert^2 = 2(\Vert\alpha\Vert^2+\Vert\beta\Vert^2) α+β2+αβ2=2(α2+β2) for all α , β ∈ V \alpha,\beta\in V α,βV
    4. ∣ ( α , β ) ∣ ≤ ∥ α ∥ ∥ β ∥ |(\alpha,\beta)|\leq \Vert\alpha\Vert \Vert\beta\Vert (α,β)αβCauchy Inequality 柯西不等式
    5. ∥ α + β ∥ ≤ ∥ α ∥ + ∥ β ∥ ∥ α − β ∥ ≤ ∥ α ∥ + ∥ β ∥ \begin{aligned}\Vert\alpha+\beta\Vert \leq \Vert\alpha\Vert+\Vert\beta\Vert\\\Vert\alpha-\beta\Vert \leq \Vert\alpha\Vert+\Vert\beta\Vert\end{aligned} α+βα+βαβα+β三角不等式
  • 上面第 4 条 Cauchy Inequality 是一个重要的不等式

    1. 证明,构造一个向量 α + x β \alpha+x\beta α+xβ,其中 x = − ( α , β ) ( β , β ) x=-\frac{(\alpha,\beta)}{(\beta,\beta)} x=(β,β)(α,β),利用自己和自己做内积的非负性,有
      ∵ ( α + k β , α + k β ) = ( α , α ) + x 2 ( β , β ) + 2 x ( α , β ) = ( α , α ) + ( α , β ) 2 ( β , β ) − 2 ( α , β ) 2 ( β , β ) ≥ 0 ∴ ( α , α ) ( β , β ) ≥ ( α , β ) 2 ∴ ∥ α ∥ 2 ∥ β ∥ 2 ≥ ( α , β ) 2 ∴ ∥ α ∥ ∥ β ∥ ≥ ∣ ( α , β ) ∣ \begin{aligned} &\begin{aligned} \because(\alpha+k\beta,\alpha+k\beta) &= (\alpha,\alpha)+x^2(\beta,\beta)+2x(\alpha,\beta) \\ &=(\alpha,\alpha)+\frac{(\alpha,\beta)^2}{(\beta,\beta)} - 2\frac{(\alpha,\beta)^2}{(\beta,\beta)} \geq 0 \end{aligned} \\ &\therefore (\alpha,\alpha)(\beta,\beta) \geq (\alpha,\beta)^2 \\ &\therefore \Vert\alpha\Vert^2\Vert\beta\Vert^2 \geq (\alpha,\beta)^2 \\ &\therefore \Vert\alpha\Vert\Vert\beta\Vert \geq \big|(\alpha,\beta)\big| \\ \end{aligned} (α+kβ,α+kβ)=(α,α)+x2(β,β)+2x(α,β)=(α,α)+(β,β)(α,β)22(β,β)(α,β)20(α,α)(β,β)(α,β)2α2β2(α,β)2αβ(α,β)
    2. 在不同的内积空间中,柯西不等式有不同的表现形式
      在这里插入图片描述
  • uniformization归一化 / unitization单位化:For any α ≠ 0 \alpha\neq 0 α=0, α ∥ α ∥ \frac{\alpha}{\Vert\alpha\Vert} αα is a unit vector

1.3.2 Distance of vectors

  • Definition:if V V V is an inner product space, the distance of α , β ∈ V \alpha,\beta\in V α,βV is defined as
    d ( α , β ) = ∥ α − β ∥ d(\alpha,\beta) = \Vert \alpha-\beta\Vert d(α,β)=αβ
  • the distance d ( α , β ) d(\alpha,\beta) d(α,β) satisfies the following rules
    1. 非负性: d ( α , β ) ≥ 0 d(\alpha,\beta)\geq 0 d(α,β)0 and d ( α , β ) = 0 ⇔ α = β d(\alpha,\beta)= 0 \Leftrightarrow \alpha=\beta d(α,β)=0α=β
    2. 对称性: d ( α , β ) = d ( β , α ) d(\alpha,\beta) = d(\beta,\alpha) d(α,β)=d(β,α)
    3. 三角不等式: d ( α , γ ) ≤ d ( α , β ) + d ( β , γ ) d(\alpha,\gamma)\leq d(\alpha,\beta)+d(\beta,\gamma) d(α,γ)d(α,β)+d(β,γ)

1.3.3 Angle of vectors

  • Definition:Suppose that V V V is an inner product space, α , β ∈ V , α , β ≠ 0 \alpha,\beta\in V, \alpha,\beta \neq \pmb{0} α,βV,α,β=000, the aggle of α \alpha α and β \beta β is defined as
    < α , β > = a r g c o s ( α , β ) ∥ α ∥ ∥ β ∥ , 0 ≤ < α , β > ≤ π \big<\alpha,\beta\big> = \mathrm{argcos} \frac{(\alpha,\beta)}{\Vert\alpha\Vert\Vert\beta\Vert}, 0 \leq \big<\alpha,\beta\big> \leq \pi α,β=argcosαβ(α,β),0α,βπ
  • Especially if ( α , β ) = 0 (\alpha,\beta)=0 (α,β)=0, we call that α \alpha α is orthogonal to β \beta β, denote as ( α , β ) = 0 ⇔ α ⊥ β (\alpha,\beta)=0 \Leftrightarrow \alpha\perp\beta (α,β)=0αβ
    Two orthogonal vectors satisfy the Pythagorean Law (勾股定理)
    α ⊥ β ⇒ ∥ α + β ∥ 2 = ∥ α − β ∥ 2 = ∥ α ∥ 2 + ∥ β ∥ 2 \alpha \perp \beta \Rightarrow \Vert\alpha+\beta\Vert^2 =\Vert\alpha-\beta\Vert^2 = \Vert\alpha\Vert^2+\Vert\beta\Vert^2 αβα+β2=αβ2=α2+β2

1.4 Example

1.4.1 Example 1

  • There are vectors x = ( x 1 , x 2 , . . . , x n ) T , y = ( y 1 , y 2 , . . . , y n ) T x=(x_1,x_2,...,x_n)^T,y=(y_1,y_2,...,y_n)^T x=(x1,x2,...,xn)T,y=(y1,y2,...,yn)T, define the inner product operation as
    ( x , y ) = y T x = ∑ i = 1 n x i y i     x , y ∈ R n ( x , y ) = y H x = ∑ i = 1 n x i y i ˉ     x , y ∈ C n \begin{aligned} &(x,y) = y^Tx = \sum_{i=1}^nx_iy_i \space\space\space x,y \in R^n \\ &(x,y) = y^Hx = \sum_{i=1}^nx_i\bar{y_i} \space\space\space x,y \in C^n \end{aligned} (x,y)=yTx=i=1nxiyi   x,yRn(x,y)=yHx=i=1nxiyiˉ   x,yCn
    then R n R^n Rn and C n C^n Cn are inner product spaces

1.4.2 Example 2

  • Vector space C [ a , b ] C[a,b] C[a,b] is an inner product space with the inner product operation defined as
    ( f , g ) = ∫ a b f ( x ) g ( x ) d x (f,g) = \int_a^bf(x)g(x)dx (f,g)=abf(x)g(x)dx
  • Proof:
    1. ( f , g ) = ∫ a b f ( x ) g ( x ) d x = ∫ a b g ( x ) f ( x ) d x = ( g , f ) (f,g) = \int_a^bf(x)g(x)dx = \int_a^bg(x)f(x)dx = (g,f) (f,g)=abf(x)g(x)dx=abg(x)f(x)dx=(g,f)
    2. ( k f , g ) = ∫ a b k f ( x ) g ( x ) d x = k ∫ a b f ( x ) g ( x ) d x = k ( f , g ) (kf,g) = \int_a^bkf(x)g(x)dx = k\int_a^bf(x)g(x)dx = k(f,g) (kf,g)=abkf(x)g(x)dx=kabf(x)g(x)dx=k(f,g)
    3. ( f + g , h ) = ∫ a b ( f ( x ) + g ( x ) ) h ( x ) d x = ∫ a b f ( x ) h ( x ) d x + ∫ a b g ( x ) h ( x ) d x = ( f , h ) + ( g , h ) (f+g,h) = \int_a^b(f(x)+g(x))h(x)dx = \int_a^bf(x)h(x)dx+\int_a^bg(x)h(x)dx = (f,h)+(g,h) (f+g,h)=ab(f(x)+g(x))h(x)dx=abf(x)h(x)dx+abg(x)h(x)dx=(f,h)+(g,h)
    4. ( f , f ) = ∫ a b ( f ( x ) ) 2 d x ≥ = 0 (f,f) = \int_a^b(f(x))^2dx \geq=0 (f,f)=ab(f(x))2dx=0, and ∫ a b ( f ( x ) ) 2 d x = 0 ⇔ f ( x ) ≡ 0 \int_a^b(f(x))^2dx =0 \Leftrightarrow f(x) \equiv 0 ab(f(x))2dx=0f(x)0

1.4.3 Example 3

  • Consider the vector space C [ a , b ] C[a,b] C[a,b], the convolution operation
    ( f , g ) = ∫ a b f ( x ) g ( a + b − x ) d x (f,g) = \int_a^bf(x)g(a+b-x)dx (f,g)=abf(x)g(a+bx)dx
    is a inner product operation or not? Why?
  • Answer:No
    在这里插入图片描述

2. Orthonormal basis

2.1 Orthonormal basis(标准正交基)

2.1.1 Definition

  1. Suppose that α 1 , α 2 , . . . , α m ≠ 0 \alpha_1,\alpha_2,...,\alpha_m \neq \pmb{0} α1,α2,...,αm=000 are nonzero vectors in inner product space V V V. If ( α i , α j ) = 0 , i ≠ j (\alpha_i,\alpha_j)=0, i\neq j (αi,αj)=0,i=j then α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm are orthogonal (正交的). Especially, if
    ( α i , α j ) = δ i j = { 0 i ≠ j 1 i = j (\alpha_i,\alpha_j) = \delta_{ij} = \begin{cases} 0& i\neq j\\ 1& i= j \end{cases} (αi,αj)=δij={01i=ji=j
    the vector group α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm are called orthonormal (标准正交的)
  2. In n n n-dimensional inner product space V V V, n n n orthogonal vectors form a basis of V V V which is named Orthogonal Basis (正交基). If the basis is orthogonal and unit, it is called Orthonormal Basis (标准正交基)
  3. Suppose that V 1 , V 2 V_1, V_2 V1,V2 are two subspaces of inner product space V V V
    1. Given α ∈ V \alpha\in V αV, if   ∀ β ∈ V 1 \space \forall \beta \in V_1  βV1 satisfies ( α , β ) = 0 (\alpha,\beta)=0 (α,β)=0, α \alpha α is said to be orthogonal to V 1 V_1 V1, denoted by α ⊥ V 1 \alpha\perp V_1 αV1
      向量正交于空间,指此向量与空间中任意向量都正交
    2. For each α ∈ V 1 \alpha \in V_1 αV1 and β ∈ V 2 \beta \in V_2 βV2, if ( α , β ) = 0 (\alpha,\beta) =0 (α,β)=0, V 1 V_1 V1 is said to be orthogonal to V 2 V_2 V2, denoted by V 1 ⊥ V 2 V_1\perp V_2 V1V2
      一空间正交于另一空间,指一空间中任意向量与另一空间中任意向量都正交(只要两个空间的某组基正交)
  4. If two subspace V 1 , V 2 V_1,V_2 V1,V2 of inner product space V V V are orthogonal (i.e. V 1 ⊥ V 2 V_1\perp V_2 V1V2), then V 1 + V 2 V_1+V_2 V1+V2 is named orthogonal sum (正交和), denoted by V 1 ⊕ V 2 V_1\oplus V_2 V1V2.(正交和一定是直和,见下面 Theorem 3)
  5. Suppose that V 1 V_1 V1 is a subspace of inner product space V V V, the subspace of V V V including all the vectors orthogonal to V 1 V_1 V1 is called the orthogonal complement (正交补) of V 1 V_1 V1, denoted by
    V 1 ⊥ = { α ∈ V ∣ α ⊥ V 1 } V_1^\perp = \{\alpha\in V|\alpha\perp V_1\} V1={αVαV1}
    V 1 ⊥ V_1^\perp V1 V V V 的 subspace,要证明这一点,可以先证明其包含 0 \pmb{0} 000 所以非空,再论证其中元素满足加法和数乘的封闭性
  6. Suppose that V 1 V_1 V1 is a subspace of an inner product space V V V. If any given α ∈ V \alpha\in V αV can be decomposed as α = α 1 + α 2 \alpha = \alpha_1+\alpha_2 α=α1+α2
    where α 1 ∈ V 1 \alpha_1\in V_1 α1V1 and α 2 ⊥ V 1 \alpha_2 \perp V_1 α2V1, then α 1 \alpha_1 α1 is called the orthogonal projection (正交投影) of α \alpha α on V 1 V_1 V1
    由于 V = V 1 ⊕ V 1 ⊥ V = V_1\oplus V_1^\perp V=V1V1 (下面定理 4),任何一个向量都可以分解为相互垂直的两部分,2.2 节的标准正交化过程,其实就是在不停地减去正交投影部分,保留与之前的空间正交的部分
  7. Assume that V 1 V_1 V1 is a subspace of an inner product space V V V. Given α ∈ V \alpha\in V αV, if there exist a vector a 1 ∈ V 1 a_1\in V_1 a1V1 such that
    d ( α , V 1 ) : = ∥ α − α 1 ∥ = min ⁡ β ∈ V 1 ∥ α − β ∥ d(\alpha,V_1):= \Vert\alpha-\alpha_1\Vert = \min_{\beta\in V_1}\Vert\alpha-\beta\Vert d(α,V1):=αα1=βV1minαβ
    then α 1 \alpha_1 α1 is named the Optimal Approximation (最优近似) of α \alpha α over V 1 V_1 V1
    这里定义了向量到空间的距离为 “该向量到空间中所有向量距离的最小值”
    在这里插入图片描述
    如上所述,subspace V 1 V_1 V1 中距离 α \alpha α 最近的向量是 α \alpha α V 1 V_1 V1 中的 orthogonal projection 正交投影

2.1.2 Theorem

  1. If the vectors α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm in inner product space are orthogonal , then α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm are linearly independent
    一组正交向量一定线性无关
    在这里插入图片描述
  2. Suppose that V V V is an n n n-dimensional inner product space. The orthonormal basis of V V V surely exist, and arbitrary orthonormal vector group in V V V can be expanded to be an orthonormal basis of V V V
    n维内积空间中,标准正交基一定存在,且任意一组标准正交向量可以扩展为一组标准正交基
    1. 随便给一组基,可以用下面的标准正交化过程变为一组标准正交基
    2. 给出一组标准正交向量,由于正交,它们一定线性无关,把 V V V 中不能被它们线性表出的向量都加入这组向量,这样就得到了 V V V 的一组基,再用标准正交化过程处理,即得一组标准正交基
  3. Assume that V 1 V_1 V1 and V 2 V_2 V2 are twp subspace of inner product space V V V, if V 1 ⊥ V 2 V_1\perp V_2 V1V2 then V 1 + V 2 V_1+V_2 V1+V2 is a direct sum
    若內积空间的两个子空间垂直,则两个子空间的和为直和
    使用等价条件 V 1 ⋂ V 2 = { 0 } V_1\bigcap V_2 = \{\pmb{0 }\} V1V2={000} 证明,用反证法
    在这里插入图片描述
  4. Suppose that inner product space V V V is the finite dimensional, V 1 V_1 V1 is a subspace of V V V. There exists unique subspace V 1 ⊥ V_1^\perp V1, such that V = V 1 ⊕ V 1 ⊥ V = V_1\oplus V_1^\perp V=V1V1
    一个內积空间可以拆成某一子空间及其正交补的正交直和
    在这里插入图片描述
    example: Let α = [ 1 0 0 0 ] ∈ R 2 × 2 \alpha = \begin{bmatrix}1 &0 \\0 &0\end{bmatrix} \in R^{2\times 2} α=[1000]R2×2, V 1 = s p a n ( α ) V_1=\mathrm{span}(\alpha) V1=span(α), ( A , B ) = t r ( B H A ) (A,B) = tr(B^HA) (A,B)=tr(BHA), please show V 1 ⊥ V_1^\perp V1 下面从不同的角度给出两种解法
    在这里插入图片描述在这里插入图片描述
  5. (Projection Theorem) If V 1 V_1 V1 is a finite dimensional subspace of an inner product space V V V, then each α ∈ V \alpha\in V αV has the unique orthogonal projection on V 1 V_1 V1
    內积空间中的任意向量,都在某个子空间中有唯一的正交投影(因为內积空间可以分解为任意子空间与其正交补的正交直和,內积中的任意向量也就可以唯一地直和分解到这两个子空间中)

2.2 Orhogonalization Process(标准正交化过程)

  • If the vectors α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm in inner product space V V V are linearly independent, then there is an orthonormal vector group ε 1 , ε 2 , . . . , ε m \varepsilon_1,\varepsilon_2,...,\varepsilon_m ε1,ε2,...,εm which are equivalent (互相可以线性表出) to α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm
    内积空间中一组线性无关向量一定可以标准正交化
    1. 正交化的思想:把每个向量中和它不正交的部分减掉
    2. 标准化的思想:把向量的长度缩短其模倍
  • 将线性无关向量组 α 1 , α 2 , . . . , α m \alpha_1,\alpha_2,...,\alpha_m α1,α2,...,αm 标准正交化为 ε 1 , ε 2 , . . . , ε m \varepsilon_1,\varepsilon_2,...,\varepsilon_m ε1,ε2,...,εm 的过程如下
    在这里插入图片描述
  • example
    在这里插入图片描述
    注意要严格按照定义计算,比如求 ε 1 \varepsilon_1 ε1 时,其中算 ∥ β 1 ∥ = ( β , β ) \Vert\beta_1\Vert = \sqrt{(\beta,\beta)} β1=(β,β) 要带入题目给出的內积公式,即 ( β , β ) = ∫ − 1 1 1 d x = 2 \sqrt{(\beta,\beta)} = \sqrt{\int_{-1}^11dx}=\sqrt{2} (β,β) =111dx =2
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云端FFF

所有博文免费阅读,求打赏鼓励~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值