Second Me + Ollama + Mac M2本地训练

官方版本Second Me,默认需要使用gpt-mini-4o才能正常训练,ollama使用OpenAI接口访问总是出现502错误,使用curl访问是成功的,说明OpenAI接口不兼容ollama的v1 chat接口(v1/embeddings可以正常使用),因此训练Second Me的过程中总会在Augment Content Retention 这步失败,而这步失败的主要原因是因为GraphRag 脚本(Second-Me/lpm_kernel/L2/data_pipeline/data_prep/scripts/graphrag_indexing.sh)执行失败了,没有生成Augment Content Retention需要的Second-Me/resources/L1/graphrag_indexing_output/subjective/entities.parquet文件,为了解决本地训练的问题,我将Second Me中所有使用到OpenAI接口的地方都统一修改为使用requests来实现。

涉及的修改文件的比较多,列表如下:

修改的代码参考如下:

另外,还有一个比较重要的地方,就是tiktoken tokenizer模型的支持。

首先需要下载cl100k_base.tiktoken到本地,如:/Users/wxl/Downloads

然后按下面代码进行修改,还有其它地方也有使用到tiktoken,也需按此进行修改。

通过以上修改,可以成功完成训练。

我使用模型配置是:

国内还有以下选择,就是不修改代码的情况下:

1、直接使用doubao-1.5-pro-32k-250115或deepseek-r1模型。

2、使用pip install litellm[proxy]代理,来兼容OpenAI接口,我在本地也失败了(502错误,OpenAI接口突然不兼容了吗?)。

模型训练后,由于推理也使用了OpenAI,也需要进行修改。

具体修改代码如下:

推理效果:

为了获得更好的效果,还需要使用deepseek-r1模型,以便获取偏好和多样化数据来增强数据。

多样化数据生成中,这个过程非常慢,单个文件用了3个多小时:

 

### 关于 LLaMA-Factory 和 Ollama 的 IT 项目或资源 #### 获取 LLaMA-Factory 和 Ollama 项目的 GitHub 地址 对于希望获取 `LLaMA-Factory` 和 `Ollama` 这两个项目的开发者来说,可以通过 Git 命令从 GitHub 上拉取这些开源项目的最新版本。 为了克隆 `ollama` 仓库到本地环境,可以执行如下命令: ```bash git clone https://github.com/ollama/ollama.git ``` 此操作会下载整个 `ollama` 项目至当前目录下[^1]。 而对于想要快速部署并使用 `LLaMA-Factory` 工具链的用户,则建议采用带深度参数的方式仅复制最新的提交记录来加速初始化过程: ```bash git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git cd LLaMA-Factory pip install -e ".[torch,metrics]" ``` 上述脚本不仅能够高效地设置开发环境,还支持通过指定额外选项安装特定功能模块所需的 Python 库文件[^2]。 #### 修改配置文件以适应自定义需求 在某些情况下,可能需要调整默认设置以便更好地适配个人研究方向或是实验场景。例如,在 `identity.json` 中更新模型名称字段为 `"Llama-3"` 或者框架名属性设为 `"LLaMA Factory"` 来反映新的特性或改进之处[^3]。 #### 性能评估指标介绍 当涉及到对基于 LLaMA 架构构建的语言模型进行性能评测时,几个重要的度量标准被广泛应用于衡量不同算法间的差异性和优势所在。其中包括但不限于 ROUGE-N (N=1,2),用于计算候选摘要与参照文档间 n-gram 单元的一致性;以及 ROUGE-L ,它关注的是两者之间最长共同子串的比例关系。除此之外还有其他辅助性的统计项如预测耗时(`predict_runtime`)、每秒钟产出实例数目 (`predict_samples_per_second`) 等等,它们共同构成了全面评价一个自然语言处理系统的多维度视角[^4]。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

jacky_wxl(微信同号)

喜欢作者

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值