所属门派:
阿尔法勒克斯特派(AlphaNext派)
门派技能:
图像处理与模式识别
门派描述:
图像处理,感知智能,让机器更加智能。
门派升级任务: 魔高一尺,道高一丈
阿尔法勒克斯特派初赛赛题
机器智能化一直是图灵先生孜孜追求的目标,欣慰的是,图灵先生已经看到了AlphaGo战胜了众多围棋高手;一些特定场景下,图像和视频分析技术也已经成功应用于工业生产和人们生活之中,例如,车牌识别已经开始替代基于无线射频技术的车辆门禁系统,安全性有效提升,同时系统成本大幅降低;人脸识别也已经在安全认证、安防监控等行业领域内得到了广泛应用。可是,图灵先生最近遇到了一点小麻烦,随着智慧城市、智能政务和智慧公安等公共安全服务的建设,图像和视频分析场景越来越复杂,尽管在深度学习等技术支撑之下,目标识别取得了较大的突破,但是对于复杂的自然场景下的目标识别,比如人脸人为遮挡存在的情况下,仍然存在识别准确率不高的问题,严重影响到了机器智能的应用。所以,机器智能亟待下一个阿尔法狗(Alpha Next)的出现。
图灵先生有信心解决这个问题,“魔高一尺,道高一丈”。图灵先生决定把这个问题抛出来,让他的学生们去研究探索。于是,图灵先生出了如下题目:
针对带有色眼镜、口罩、帽子三种不同的场景下的人的人脸像,进行目标识别和分类。具体要求如下:
1.参赛选手自行采集数据,在自然光照下,分别拍摄若干人的人脸照(至少5人),分四种场景:
a)带有色或深色眼镜,采集正面照、侧面照和俯视照
b)带口罩,采集正面照、侧面照和俯视照
c)带帽子,采集正面照、侧面照和俯视照
d)什么都不带,采集正面照、侧面照和俯视照
e)人脸照的分辨率112*96像素,24位真彩色
2.基于图像处理和模式识别技术进行人脸照精细化属性分析,给出其属性特征。属性识别结果包括:
a)性别:
b)是否带眼镜,如是,给出眼镜颜色
c)是否带口罩,如是,给出口罩颜色
d)是否带帽子,如是,给出帽子颜色
3.提交结果:
a)实验算法报告ppt,请用ppt详细描述算法的实现原理和实现过程,并展示实验结果;
b)算法代码和数据。请提供完整的可执行程序及实验数据(图像集);
c)提交作品时请务必在paper或PPT中注明团队成员信息(团队名称、团队成员、团队成员姓名、身份证号码、毕业院校)。
d)如PPT及代码数据太大,请先上传网盘,再将链接放入TXT文档中上传大赛网站。
4.组队建议:
a)可单人成队参赛或组队参赛,组队最多3人。
b)多人组队请务必注明团队的分工情况。
5.结果评定:
说明:为了弘扬共享共建精神,本次活动将对选手提交的照片数量和质量作为一个加分项,欢迎选手提供尽可能多的高质量的样本照片。
a)照片数量及质量权重,满分10分。4种场景下各10个不同人的人脸照片可得基础分5分,数量每增加1倍,得分每加1分;
b)算法权重,40分;
c)算法结果验证,权重,50分;
不懂的可以加我的QQ群:867852850(中兴校招内推交流群) 欢迎你的到来哦,看了博文给点脚印呗,谢谢啦~~