2.[论文分享] 基于全局和局部辅助任务的进化多任务多目标优化

文章介绍了一种基于进化多任务的算法CMEGL,通过全局和局部辅助任务来解决约束多目标优化问题。CMEGL通过知识转移增强搜索能力和多样性,尤其在处理离散的复杂优化问题上表现优秀。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

TitleEvolutionary Multitasking With Global and Local Auxiliary Tasks for Constrained Multi-Objective Optimization
AuthorKangjia Qiao, Jing Liang, Senior Member, IEEE, Zhongyao Liu, Kunjie Yu, Caitong Yue, and Boyang Qu
Affiliations

Zhengzhou University

Emailsliangjing@zzu.edu.cn
PaperEvolutionary Multitasking with Global and Local Auxiliary Tasks for Constrained Multi-Objective Optimization | IEEE Journals & Magazine | IEEE Xplore

摘要

进化多任务(Evolutionary multitask, EMT)是一种通过主任务与其他相关任务之间的知识转移来解决复杂优化问题的新模型。本文开发了一种基于进化多任务的约束多目标进化算法来解决约束多目标优化问题,该方法分别由一个特定的种群创建并优化主任务、全局辅助任务和局部辅助任务。主任务是寻找可行的Pareto前沿(PF),并利用全局和局部辅助任务分别增强全局和局部多样性。利用全局辅助任务实现全局搜索,忽略约束条件,帮助主任务的种群通过不可行障碍。利用局部辅助任务在主任务的种群周围提供局部多样性,从而开发有潜力的区域。通过三个任务之间的知识转移,将显著提高主任务群体的搜索能力。与其他先进的约束多目标优化算法相比,在三个基准测试套件上的实验结果表明,所提出的算法具有更好的性能。

引言

近年来,基于知识转移机制的进化多任务[19]优化方法在解决复杂优化问题方面引起了广泛的关注。进化多任务处理最初是为了解决包含多个不同任务同时优化的多任务优化问题而发展起来的,其中知识转移在提高种群多样性和搜索能力[20]方面发挥着重要作用。目标任务的种群通过从其他任务中转移有用的知识(以个体或其基因为代表),不仅获得多样化的搜索方向以增加多样性,而且能迅速收敛到更好甚至最优的区域[21]

进化多任务处理的成功促使研究者利用多任务处理来解决单任务优化问题,在主任务和创建的辅助任务之间进行知识转移。结果表明,将单任务优化问题转化为多任务优化问题,并利用进化多任务方法进行求解是有效的。例如,Gputa等人[22]将一个多目标优化问题转化为一系列多目标优化问题,构造了一个多任务优化问题。其他问题,如带时间窗的多目标车辆路径问题[23]、多目标特征选择问题[24]、双层优化问题[25],也采用基于进化的多任务方法进行求解。对于cops,在[26]中开发了一个进化的基于多任务的CMO框架(EMCMO),在该框架中,可以通过删除一些约束来创建任意数量的辅助任务。但是,由于先验知识是未知的,所以我们创建了一个简化的实例,在辅助任务中采用了零约束,其目的是寻找UPF。因此,EMCMO也不能有效地求解复杂的cmp,需要设计更有效的辅助任务来提高算法的性能。

本文在扩展EMCMO的基础上,提出了一种基于全局和局部辅助任务的进化多任务处理方法(CMEGL),该方法考虑创建两个互补的辅助任务来帮助解决主任务。CMEGL包括一个主任务和两个辅助任务的优化,并创建三个种群进行各自求解。主要的任务是解决CMOP,即推动人口接近CPF。全局辅助任务致力于快速搜索整个空间,跨越不可行障碍,找到有希望的可行区域。此外,设计了局部辅助任务,利用主任务种群周围有希望的不可行解来增强局部多样性,从而找到更多新的可行Pareto最优解。在这三个任务之间进行知识转移,以帮助更好地解决主要任务。主要贡献归纳如下:

1)提出了一种新的CMEGL算法,该算法通过创建一个全局辅助任务和一个局部辅助任务来帮助求解主任务。两个辅助任务发挥着不同的、互补的作用,从而提供各种有用的信息。与其他两种群cmoas相比,CEMGL的新颖之处在于既考虑了全球多样性,又考虑了本地多样性。

2)设计了一种自适应方法,在全局辅助任务收敛到UPF时停止更新种群。与其他使用UPF的双种群CMOEAs相比,CEMGL的新颖之处在于它在后期停止了UPF的使用,节省了计算资源。

3)在三个基准测试套件上,将拟议的CMEGL与几个最新的两种群CMOEAs进行比较。结果表明,CMEGL在可行域小而离散的cmp上表现出优异的性能。

EMCMO[26]相比,有两个不同的方面。i) EMCMO只考虑全局多样性,而CMEGL也考虑了增强局部多样性的局部辅助任务。因此,CMEGL可以更好地处理CPFUPF低重叠程度的cmpii)CPFUPF距离较远时,EMCMO在整个进化过程中仍将辅助种群进化到接近UPF的位置,导致后期资源的浪费。相反,在CMEGL中,全局辅助任务的种群将通过自适应方案停止更新。这两个方面的改进有效地提高了CMEGL的性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值