概率图模型
即图模型,graphical model;PGM(Probabilistic Graphical Models)。
几年前,概率图模型(图论和概率方法的合并)那是风靡一时。概率图流派,更符合人类的思维习惯。它将内在逻辑利用概率关系设计到模型当中,然后利用少量的数据就能训练出可以拟合大量场景的模型。
譬如,Nature 的一篇论文就是利用概率图模型模仿人类书法,并通过图灵测试。(这篇论文使用的是贝叶斯方法)
定义
概率图模型:是一类用图的形式表示随机变量之间条件依赖关系的概率模型。是概率论与图论的结合。
解释
Probabilistic(概率)
首先解释下不确定性(Uncertainty)。产生不确定性的原因主要有:
1)对世界认知状态的不完整;
2)含有噪声的观测(Noisy observations);
3)模型未能覆盖所有实际现象;
4)固有的随机性;
概率论,通常具有清晰的表达式,强推理模式,可建立的学习方法。
Graphical(图)
来自计算机科学,是一种复杂数据结构。通常包括顶点和连接顶点的边。
分类
根据图中边有无方向,常用的概率图模型分为两类:
1)有向图:亦称贝叶斯网络(Bayesian Networks)或信念网络(Belief Networks, BN’s). 最简单的图模型是贝叶斯网络,通常贝叶斯网络使用有向无环图来表示,图中的顶点表示随机变量,图中的边沿表示随机变量之间的概率依赖
2)无向图:即probabilistic undirected graphical model,亦称马尔可夫随机场(Markov Random Fields, MRF’s)或马尔可夫网络(Markov Networks)。是一个可以由无向图表示的联合概率分布。