机器学习基础--概率图模型

概率图模型

  即图模型,graphical model;PGM(Probabilistic Graphical Models)。
  几年前,概率图模型(图论和概率方法的合并)那是风靡一时。概率图流派,更符合人类的思维习惯。它将内在逻辑利用概率关系设计到模型当中,然后利用少量的数据就能训练出可以拟合大量场景的模型。
  譬如,Nature 的一篇论文就是利用概率图模型模仿人类书法,并通过图灵测试。(这篇论文使用的是贝叶斯方法)
  这里写图片描述

定义

  概率图模型:是一类用图的形式表示随机变量之间条件依赖关系的概率模型。是概率论与图论的结合。

解释

Probabilistic(概率)

  首先解释下不确定性(Uncertainty)。产生不确定性的原因主要有:
  1)对世界认知状态的不完整;
  2)含有噪声的观测(Noisy observations);
  3)模型未能覆盖所有实际现象;
  4)固有的随机性;
  概率论,通常具有清晰的表达式,强推理模式,可建立的学习方法。

Graphical(图)

  来自计算机科学,是一种复杂数据结构。通常包括顶点和连接顶点的边。

分类

  根据图中边有无方向,常用的概率图模型分为两类:
  1)有向图:亦称贝叶斯网络(Bayesian Networks)或信念网络(Belief Networks, BN’s). 最简单的图模型是贝叶斯网络,通常贝叶斯网络使用有向无环图来表示,图中的顶点表示随机变量,图中的边沿表示随机变量之间的概率依赖

  2)无向图:即probabilistic undirected graphical model,亦称马尔可夫随机场(Markov Random Fields, MRF’s)或马尔可夫网络(Markov Networks)。是一个可以由无向图表示的联合概率分布。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值