正多边形的无缝完美拼接
图中展示的是自然界中在平面上仅存的4种无缝拼接正多边形。
(在球面上还存在其他的,比如足球为6——5)
试着垒一种拼图游戏,拿若干个任意正多边形让它们拼接在一起,要求是它们中间不能留出缝隙。 如果是在平面上,其结果是只有四种情况。 注意正n边形的外角平分线。 计算公式如下: 看一个正n边形的外角的一半是否为另一个正m边形的内角。 (360-(n-2)*180/n)/2=(m-2)*180/m 解这个不定方程可求出只有四组整数解。分别对应图中这四种情况。 正n边形的外角的1/3,1/4,……是否为另一个正m边形的内角。则不存在整数解。 若(360-(n-2)*180/n)/2>(m-2)*180/m则得出的是球面的情况。比如足球为6——5。
源程序仅一行: to ta :a :b repeat :a [fd 40 repeat :b [lt 360/ :b fd 40] rt 360/ :a] end
| |
3——12 | |
4——8 | |
6——6 | |
10——5 | |
空间5——6 |