机器学习-10.K-means

1. 概述

  • k-means为无监督学习,即没有目标值。
  • k-means步骤
    在这里插入图片描述
    计算到k中心的距离一般采用欧式距离进行计算。
  • 图解如下:
    在这里插入图片描述
  • API:sklearn.cluster.KMeans
    在这里插入图片描述
  • k-means的使用一般用于分类之前进行,在没有目标值,仅有历史的数据特征时,又想预测新数据的类别,可以先对历史数据进行聚类。

2. kmeans性能评估

  • 评估指标:轮廓系数
    在这里插入图片描述
    按照下图描述的外部距离最大化,内部局里最小化是最好的分类结果。
    轮廓系数的计算是计算每一个样本的,假设命名下图蓝色中的一个样本为“蓝1”,则蓝1的计算如下:
  1. 计算蓝1到自身类别的点的距离的平均值叫ai
  2. 计算蓝1分别到红色类别,绿色类别所有点的距离,求出平均值,b1,b2,取其中最小的值记作bi
  3. 蓝1轮廓系数根据公示,如果聚类效果极端的好,bi远远大于ai,则轮廓系数无限趋近于1,当聚类效果极端的差,bi远远小于ai,则轮廓系数无限趋近与-1。
    在这里插入图片描述
  • kmeans性能评估指标API:sklearn.metrics.sihouette_score
    在这里插入图片描述

kmeans小结

  • 特点:采用迭代式算法,直观易懂且非常实用。
  • 缺点:容易收敛到局部最优解(需要多次聚类解决此问题,当然sklearn中已经考虑到这种问题)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值