第一章:人工智能概述

1.智能的概念:

智能是知识与智力的总和。

其中,知识是一切智能行为的基础,而智力是获取知识并应用知识求解问题的能力。

2.智能的四个特征:

        2.1.具有感知能力

        感知能力是指通过视觉、听觉、触觉、味觉等感觉感知外部世界的能力

        2.2.具有记忆与思维能力

         记忆与思维是人脑最重要的功能,是人有智能的根本原因。记忆用来储存知识,而思维用来处理信息。

        2.3.具有学习能力

        学习是人的本能,是人类智慧最重要的方面。

        2.4.具有行为能力

        人们通常用语言或者表情 、肢体动作以及眼神对外界的刺激做出反应,传达某个信息。

3.人工智能的诞生:

        达特茅斯会议

达特茅斯会议的预期目标:制造一台机器,该机器可以模拟学习或者智能的任何其他方面,只要这些方面可以从原理上精确描述。

图灵测试:人与机器分别在两个房间里,可以对话,但是彼此都看不到对方。如果通过对话,作为人的一方,无法分辨出对方是人,还是机器人。那么就可以认为那台机器达到了人类智能的水平。

4.人工智能的发展:

人工智能研究中的“小白鼠”:

         下棋和博弈问题

                理由:

                        一、博弈问题非常复杂,可以让人工智能大显身手。

                        二、人工智能算法在博弈问题中容易实现,特别是人工智能算法在出现错误时不会产生重大错误。

两场标志性人机博弈:

        4.1“深蓝”战胜国际象棋棋王 卡斯帕罗夫

        4.2阿尔法狗无师自通横扫世界围棋大师

 

5.人工智能的主要应用领域:

 

5.1 自动定理证明:

我国吴文俊院士提出并且实现的几何定理机器证明方法---吴氏方法,是机器定理证明领域的一项标志性成果。

5.4 计算机视觉:

计算机视觉或者机器视觉是用机器代替人眼进行测量和判断,是模式识别研究的一个重要方向。

分为低层视觉与高层视觉,低层视觉主要执行预处理功能,如边缘检测、移动目标检测、纹理分析、曲面色彩等。其最主要目的是使得要识别的对象更突出,这时还不是理解阶段。高层视觉主要是理解对象,需要掌握与对象相关的知识。

5.5 自然语言理解:

研究如何让计算机理解人类自然语言,是人工智能中十分重要的领域。

 

本章小结

人类智能是自然界四大奥秘之一,对它很难给出确切的定义。目前关于智能的观点可以分为思维理论、知识阈值理论、进化理论等学派。

简单地说,智能是知识与智力的总和。知识是一切智能行为的基础,智力是获取知识并应用知识求解问题的能力。

【智能具有感知能力、记忆与思维能力、学习能力、行为能力等,这是智能的显著特征。】

人工智能是用人工的方法在机器(计算机)上实现的智能。人工智能的发展经历了曲折的历史。

人工智能研究的基本内容为知识表示、机器感知、机器思维、机器学习、机器行为等几方面。

人工智能伦理学是专门针对人工智能系统的应用伦理学分支。

可以从技术、数据和应用3个层面分析人工智能伦理的成因。

人工智能伦理的治理应形成涵盖技术、政策、道德、法律、教育等多层次的伦理治理体系。

人工智能发展的基本原则:人类根本利益原则、责任原则。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值