【深度学习】Pytorch中.detach()函数

实际上,detach()就是返回一个新的tensor,并且这个tensor是从当前的计算图中分离出来的。但是返回的tensor和原来的tensor是共享内存空间的。

import torch
a = torch.tensor([1.0, 2.0, 3.0], requires_grad = True)
a = a.detach() # 会将requires_grad 属性设置为False
print(a.requires_grad)

结果为:

False

举个例子来说明一下detach()函数有什么用。 如果A网络的输出被喂给B网络作为输入, 如果我们希望在梯度反传的时候只更新B中参数的值,而不更新A中的参数值,这时候就可以使用detach()

a = A(input)
a = a.deatch() # 或者a.detach_()进行in_place操作
out = B(a)
loss = criterion(out, labels)
loss.backward()

如果希望修改A的参数, 而不希望修改B的参数, 那么就需要手动将B中参数的requires_grad属性设置为False:

for param in B.parameters():
    param.requires_grad = False
### 回答1: 在PyTorch,当使用autograd跟踪张量的操作历史时,有时需要从计算图分离张量以进行进一步的计算。在这种情况下,可以使用`detach()`方法来创建一个新的张量,该张量与原始张量具有相同的值,但不再与计算图相关联。 然后,如果需要将该张量转换为NumPy数组,可以使用`numpy()`方法。因此,`tensor.detach().numpy()`的含义是将张量分离并转换为NumPy数组。 ### 回答2: tensor.detach().numpy() 是 PyTorch 用来将一个 tensor 断开与计算图的连接,并将其转换为 NumPy 数组的方法。 首先,tensor.detach() 的作用是返回一个新的 tensor,该 tensor 取消了与当前计算图的关联。这意味着我们无法再通过新的 tensor 进行求导操作,因为它已经与计算图分离了。 接着,我们调用 numpy() 方法将该 tensor 转换为一个 NumPy 数组。NumPy 是一个广泛使用的 Python 数学库,它提供了对多维数组对象的支持,并且提供了大量的数学函数用于数组操作。 这个方法在深度学习非常常用,它能够将 tensor 对象转换为 NumPy 数组,从而方便地与其他 Python 库进行集成。因为 NumPy 数组与 tensor 对象之间可以互相转换,所以我们可以方便地在 PyTorch 和 NumPy 之间进行数据传递和计算,以满足特定需求。 总结来说,tensor.detach().numpy() 是一个在 PyTorch 将一个 tensor 对象断开与计算图的连接,并将其转换为 NumPy 数组的方法,可以用于方便地将数据与其他 Python 库进行集成和操作。 ### 回答3: tensor.detach().numpy()是将PyTorch张量(tensor)从计算图分离出来,并将其转换为NumPy数组(numpy.ndarray)的操作。 在PyTorch,张量可以参与计算图的运算以进行自动求导。当我们想要获取一个张量的值,但又不需要梯度信息时,可以使用detach()方法将其从计算图分离出来。分离后的张量将不再与原计算图产生任何关联,并且无法进行反向传播。 detach()方法返回分离后的张量,而后可以使用numpy()方法将其转换为NumPy数组。NumPy是一个常用的Python库,用于科学计算和数据处理。将张量转换为NumPy数组可以方便地在NumPy环境下进行操作和分析。 因此,tensor.detach().numpy()的操作可以帮助我们从PyTorch张量获取不需要梯度信息的值,并将其转换为NumPy数组,以便在NumPy环境下进行进一步的处理和分析。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值