文章目录
- 一、Sewer-ML
- 二、AmsterTime (AmsterTime: A Visual Place Recognition Benchmark Dataset for Severe Domain Shift)
- 三、Atlas
- 四、Cross-View Time Dataset
- 五、DEIC Benchmark (Data-Efficient Image Classification Benchmark)
- 六、ETHEC (ETH Entomological Collection (ETHEC) Dataset)
- 七、KTH-TIPS2
- 八、LIMUC (Labeled Images for Ulcerative Colitis)
- 九、LKS (Liver Kidney Stomach)
- 十、SI-Score
一、Sewer-ML
Sewer-ML 是下水道缺陷数据集。 它包含 130 万张图像,来自三个丹麦自来水公司九年来收集的 75,618 个视频。 所有视频均由持有执照的下水道检查员按照丹麦下水道检查标准 Fotomanualen 进行注释。 这会产生一致且可靠的注释,以及总共 17 个带注释的缺陷类别。
二、AmsterTime (AmsterTime: A Visual Place Recognition Benchmark Dataset for Severe Domain Shift)
AmsterTime 数据集提供了 2,500 张精心策划的图像集合,这些图像与街景中的同一场景与阿姆斯特丹市的历史档案图像数据相匹配。 这些图像对使用不同的相机、视点和外观捕捉同一地点。 与现有的基准数据集不同,AmsterTime 是直接在 GIS 导航平台(Mapillary)中众包的。 反过来,所有匹配对都由人类专家进行验证,以验证正确的匹配并评估人类在视觉位置识别(VPR)任务中的能力,以供进一步参考。
数据集的属性总结如下:
来自阿姆斯特丹城市档案馆的 1200 多张免许可图像,代表了阿姆斯特丹市的城市地点,由许多摄影师在上个世纪拍摄。
所有档案查询均与来自 Mapillary 的街景图像相匹配。
所有匹配均经过建筑历史学家和阿姆斯特丹居民的验证。
图像对是使用不同相机、时滞、结构变化、遮挡、视点、外观和照明捕捉同一地点的档案和街景。
由于扫描的档案和街景图像之间存在显着差异,数据集在查询和图库之间表现出域转移。
在数据集上创建两个子任务:
验证是一个二元分类(辅助)任务,用于检测同一地点的一对档案和街景图像。 AmsterTime 数据集的验证任务将所有众包图像对都标记为正,其中通过随机配对档案和街景图像生成相同数量的负样本,验证任务中总共有 2,462 对。
检索是对应于VPR的主要任务,其中将给定的查询图像与一组图库图像进行匹配。 对于检索任务,AmsterTime 数据集提供 1231 个查询图像,其中留一集作为每个查询的图库图像。
三、Atlas
Atlas是电商服装产品分类的数据集。 Atlas数据集由专注于服装产品的高质量产品分类数据集组成,其中包含服装类别下的186,150张图像,分类中具有3个级别和52个叶节点。
四、Cross-View Time Dataset
世界的面貌不仅因地而异,而且因时、因月而异。 每天都有数十亿张图像捕捉这种复杂的关系,其中许多图像与精确的时间和位置元数据相关。 我们建议使用这些图像来构建全球范围内的视觉外观属性动态图。 这样的地图可以细粒度地了解任何地理位置和时间的预期外观。 我们的方法将密集的俯视图像与位置和时间元数据集成到一个能够映射各种视觉属性的通用框架中。 我们方法的一个关键特征是它不需要手动数据注释。 我们演示了这种方法如何支持各种应用,包括图像驱动的地图、图像地理定位和元数据验证。
五、DEIC Benchmark (Data-Efficient Image Classification Benchmark)
DEIC 是衡量图像分类背景下模型数据效率的基准。 它由 6 个数据集组成,每个数据集包含少量训练样本(即 30 < x < 80)。 它涵盖多个图像领域(即自然图像、细粒度识别、医学图像、遥感、手写识别)和数据类型(即RGB、灰度、多光谱)。
六、ETHEC (ETH Entomological Collection (ETHEC) Dataset)
它包括 47,978 张蝴蝶图像,具有 4 级标签层次结构。 ETHEC 数据集的标签层次结构分为 4 个级别:科、亚科、属和种。 6科 -> 21亚科 -> 135属 -> 561种
七、KTH-TIPS2
创建 KTH-TIPS(不同照明、姿势和比例下的纹理)图像数据库是为了在两个方向上扩展 CUReT 数据库,通过提供比例以及姿势和照明的变化,并通过对其材料子集的其他样本进行成像 在不同的设置中。
KTH-TIPS2 数据库更进一步,对 11 种材料的 4 个不同样本进行成像,每种样本都处于不同的姿态、照明和比例下。
有关数据库的更多信息,请查看文档。 数据库可以在这里下载。
八、LIMUC (Labeled Images for Ulcerative Colitis)
LIMUC 数据集是最大的公开可用的标记溃疡性结肠炎数据集,包含来自 564 名患者和 1043 例结肠镜检查程序的 11276 张图像。 三位经验丰富的胃肠病学家参与了注释过程,所有图像均根据梅奥内窥镜评分(MES)进行标记。
九、LKS (Liver Kidney Stomach)
LKS 是一个包含 684 个肝-肾-胃免疫荧光全切片图像 (WSI) 的数据集,用于研究自身免疫性肝病。
十、SI-Score
SI-SCORE 是一个综合数据集,用于分析对象位置、旋转和大小的鲁棒性。 它由仅因对象大小和对象位置等因素而变化的图像组成。
SI-SCORE 是通过获取对象和背景并系统地改变对象大小、位置和旋转角度来构建的,以便可以研究改变这些因素对模型性能的影响。