【机器学习 | 异常检测】孤立森林(isolation Forest)iForest 算法理论讲解及 Python 实战

本文详细介绍了孤立森林算法的工作原理,包括训练过程中的关键概念如路径长度和异常分数计算,以及其优缺点。通过实例展示了如何使用Python实现孤立森林并可视化结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、原理

孤立森林(Isolation Forest,简称 iForest)是一种无监督学习算法,用于识别异常值。

其基本原理可以概括为一句话:异常数据由于数量较少且与正常数据差异较大,因此在被隔离时需要较少的步骤。

有两个假设:

  • 异常的值是非常少的(如果异常值很多,可能被识别为正常的)
  • 异常值与其他值的差异较大(这点也可以引出主要是全局上都为异常的异常,局部小异常可能发现不了,因为差异并不大)

二、具体流程

2.1 训练森林

  1. 子采样: 首先从整个数据集中随机抽取一定数量的样本来为构建树做准备。这些抽样的子集大小通常远小于原始数据集的大小,这样可以限制树的大小,并且减少计算复杂度。
  2. 构建孤立树 (iTrees): 对于每个子采样集,算法构建一棵孤立树。构建孤立树的过程是递归的。在每个节点,算法随机选择一个特征,并在该特征的最大值和最小值之间随机选择一个分割值。然后,数据根据这个分割值将样本分到左子树或右子树(这里其实就是简单的将样本中特征小于这个分割点的样本分到左边,其次分到右边)。这个过程的结束条件:树达到限定的高度, 节点中的样本数量到一定的数目,或者所有样本的所选特征值都是同一个值。
  3. 森林构建: 重复1-2构建完特定数量的孤立树,集合为孤立森林。

2.2 首先要明确几个相关概念

  1. 路径长度( h ( x ) h(x) h(x)): 指样本通过该孤立树构建阶段的特征选择方式,从树的根节点到达该样本被孤立的节点(被孤立就是意味着这个样本最终到达的树的叶子节点)所需要的边数。
  2. 平均路径长度 E ( h ( x ) ) E(h(x)) E(h(x)): 该样本在森林中所有树的路径长度的平均值。
  3. 树的平均路径长度:
    c ( n ) = 2 H ( n − 1 ) − 2 ( n − 1 ) n c(n)=2H(n-1)-\frac{2(n-1)}{n} c(n)=2H(n1)n2(n1)
    H ( i ) H(i) H(i) 是调和数,可以近似为 l n ( i ) + 0.5772156649 ln(i) + 0.5772156649 ln(i)+0.5772156649,其中
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值