【计算机视觉】YOLO-NAS介绍

本文介绍了DeciAI开发的YOLO-NAS,一种在量化支持和准确性-延迟权衡方面有所突破的物体检测模型。它采用量化感知块和选择性量化技术,提供卓越的性能和多种型号以适应不同应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、概述

由Deci AI 开发的YOLO-NAS 是一种开创性的物体检测基础模型。它是先进的神经架构搜索技术的产物,经过精心设计,解决了以往YOLO 模型的局限性。YOLO-NAS在量化支持和准确性-延迟权衡方面有了重大改进,是物体检测领域的一次重大飞跃。

在这里插入图片描述

YOLO-NAS概览。 YOLO-NAS采用了量化感知块和选择性量化技术,以获得最佳性能。该模型在转换为 INT8 量化版本时,精度下降极小,比其他模型有显著提高。这些进步最终形成了一个卓越的架构,具有前所未有的目标检测能力和出色的性能。

二、主要功能

  • 便于量化的基本模块: YOLO-NAS 引入了便于量化的新基本模块,解决了以往YOLO 模型的一个重大局限。
  • 先进的训练和量化: YOLO-NAS 利用先进的训练方案和训练后量化来提高性能。
  • AutoNAC 优化和预训练: YOLO-NAS 采用了 AutoNAC 优化技术,并在 COCO、Objects365 和Roboflow 100 等著名数据集上进行了预训练。这种预训练使其非常适合生产环境中的下游对象检测任务。

三、预训练模型

使用Ultralytics 提供的预训练YOLO-NAS 模型,体验下一代物体检测的强大功能。这些模型旨在提供一流的速度和精度性能。您可以根据自己的具体需求从各种选项中进行选择:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

旅途中的宽~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值