一、Agricultural Object Detection with You Look Only Once (YOLO) Algorithm: A Bibliometric and Systematic Literature Review
Vision 是农业中使用的多种数字技术和工具的主要组成部分。物体检测器 You Look Only Once (YOLO) 由于其最先进的性能,在相对较短的时间内在农业中广受欢迎。YOLO 提供准确度的实时检测,并应用于各种农业任务,包括监控、监视、传感、自动化和机器人技术。YOLO 在农业中的研究和应用正在迅速加速,但具有分散性和多学科性。此外,物体检测器的性能特征(即精度、速度、计算)会影响技术在农业中的实施和采用速度。因此,本研究旨在收集大量文献,以记录和批判性评估 YOLO 在农业物体识别中的进展和应用。首先,我们对 257 篇文章进行了文献计量学审查,以了解 YOLO 在农业领域的学术前景。其次,我们对 30 篇文章进行了系统评价,以确定 YOLO 针对特定农业任务的当前知识、差距和修改。该研究批判性地评估和总结了有关 YOLO 端到端学习方法的信息,包括数据采集、处理、网络修改、集成和部署。我们还讨论了特定于任务的 YOLO 算法修改和集成,以应对农业对象或环境特定的挑战。一般来说,YOLO 集成的数字工具和技术显示出实时、自动监控、监控和对象处理的潜力,以减少劳动力、生产成本和环境影响,同时最大限度地提高资源效率。该研究提供了详细的文件,并显着推进了在农业中应用 YOLO 的现有知识,这将使科学界受益匪浅。
https://arxiv.org/abs/2401.10379
二、YOLOv1 to YOLOv10: A comprehensive review of YOLO variants and their application in the agricultural domain
这项调查调查了各种 YOLO 变体(从 YOLOv1 到最先进的 YOLOv10)在农业进步的背景下的变革潜力。主要目标是阐明这些尖端的目标检测模型如何重新激活和优化农业的各个方面,从作物监测到牲畜管理。它旨在实现关键目标,包括确定农业中的当代挑战、对 YOLO 的渐进式进步的详细评估以及探索其在农业中的具体应用。这是首批包含最新 YOLOv10 的调查之一,为其在人工智能和自动化时代对精准农业和可持续农业实践的影响提供了新的视角。此外,该调查对 YOLO 的表现进行了批判性分析,综合了现有研究,并预测了未来趋势。通过仔细检查 YOLO 变体中包含的独特功能及其实际应用,这项调查为 YOLO 变体与农业之间不断发展的关系提供了有价值的见解。这些发现有助于细致入微地了解精准农业和可持续农业实践的潜力,标志着在农业部门内整合先进的物体检测技术向前迈出了重要一步。
https://arxiv.org/abs/2406.10139
三、YOLOv10 to Its Genesis: A Decadal and Comprehensive Review of The You Only Look Once (YOLO) Series
这篇评论系统地研究了 You Only Look Once (YOLO) 对象检测算法从 YOLOv1 到最近发布的 YOLOv10 的进展。本研究采用倒序分析,研究了 YOLO 算法引入的进步,从 YOLOv10 开始,一直到 YOLOv9、YOLOv8 和后续版本