x = tf.reshape(x, shape = [-1, 28, 28, 1])中-1的解释

本文解析了在使用TensorFlow构建深度神经网络时,代码中的`tf.reshape(x, shape=[-1, 28, 28, 1])`中`-1`的巧妙应用,通过numpy实例展示其作用,并揭示了在数据维度转换中的灵活性。
摘要由CSDN通过智能技术生成

今天在学习tensorflow深度神经网络的时候发现有这样一行代码:

x = tf.reshape(x, shape = [-1, 28, 28, 1])

其中的参数:-1让我不知所措,其实他就是一种参数的省略,几个例子

z = np.array([[1, 2, 3, 4],
          [5, 6, 7, 8],
          [9, 10, 11, 12],
          [13, 14, 15, 16]])
z.shape
(4, 4)

 

z.reshape(-1)
array([ 1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15, 16])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

nwsuaf_huasir

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值