微积分——一元微积分学

一、函数极限与连续

1.1 极限
  设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一去心邻域内有定义,若存在常数A,对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,总存在正数 δ \delta δ,使得当 0 < ∣ x − x 0 ∣ < δ 0 < |x - x_0| < \delta 0<xx0<δ时,都有 ∣ f ( x ) − A ∣ < ϵ |f(x) - A| < \epsilon f(x)A<ϵ,记作 l i m x → x 0   f ( x ) = A lim_{x\rightarrow x_0}\ f(x) = A limxx0 f(x)=A其刻画了 U o ( x 0 , δ ) U^o(x_0, \delta) Uo(x0,δ)内, f ( x 0 ) f(x_0) f(x0) A A A的无限接近。极限的性质如下:
  (1)若 l i m x → x 0   f ( x ) lim_{x\rightarrow x_0}\ f(x) limxx0 f(x)存在,则 l i m x → x 0   f ( x ) = A ∈ R lim_{x\rightarrow x_0}\ f(x) = A \in R limxx0 f(x)=AR
  (2)唯一性: l i m x → x 0   f ( x ) lim_{x\rightarrow x_0}\ f(x) limxx0 f(x)存在的充要条件为 l i m x → x 0 −   f ( x ) = l i m x → x 0 +   f ( x ) = A lim_{x\rightarrow x_0^-}\ f(x) = lim_{x\rightarrow x_0^+}\ f(x) = A limxx0 f(x)=limxx0+ f(x)=A
  (3)局部有界性:若 l i m x → x 0   f ( x ) = A lim_{x\rightarrow x_0}\ f(x) = A limxx0 f(x)=A,则 ∃ M > 0 \exists M > 0 M>0 ∣ f ( x ) ∣ ≤ M |f(x)| \le M f(x)M
  (4)局部保号性:若 l i m x → x 0   f ( x ) = A lim_{x\rightarrow x_0}\ f(x) = A limxx0 f(x)=A A > 0 A>0 A>0,则 f ( x ) > 0 f(x) > 0 f(x)>0,反之亦然; f ( x ) ≥ 0 f(x) \ge 0 f(x)0,则 A ≥ 0 A \ge 0 A0,反之亦然;
  (5)极限的余项:若 l i m x → x 0   f ( x ) = A lim_{x\rightarrow x_0}\ f(x) = A limxx0 f(x)=A,则 f ( x ) = A + α ( x ) f(x) = A + \alpha(x) f(x)=A+α(x),其中 l i m x → x 0   α ( x ) = 0 lim_{x\rightarrow x_0}\ \alpha(x) = 0 limxx0 α(x)=0

1.2 极限计算
  若 l i m x → a   f ( x ) = 0 lim_{x\rightarrow a}\ f(x) = 0 limxa f(x)=0 l i m x → a   F ( x ) = 0 lim_{x\rightarrow a}\ F(x) = 0 limxa F(x)=0,且 f ( x ) f(x) f(x) F ( x ) F(x) F(x)可导, d F ( x ) / d x ≠ 0 dF(x)/dx \ne 0 dF(x)/dx=0,则 l i m x → a   f ( x ) / F ( x ) = l i m x → a   ( d f ( x ) / d x ) / ( d F ( x ) / d x ) lim_{x\rightarrow a}\ f(x)/F(x) = lim_{x\rightarrow a}\ (df(x)/dx)/(dF(x)/dx) limxa f(x)/F(x)=limxa (df(x)/dx)/(dF(x)/dx)称为洛必达法则

  设 f ( x ) f(x) f(x)在点 x 0 x_0 x0处有n阶导数,则在 x 0 x_0 x0的邻域内, f ( x ) f(x) f(x)k可以展开,形如 f ( x ) = ∑ n = 0 ∞ d n f ( x ) / d x n ∣ x = x 0 ( x − x 0 ) n / n ! f(x) = \sum_{n=0}^\infty d^nf(x)/dx^n|_{x = x_0}(x - x_0)^n/n! f(x)=n=0dnf(x)/dxnx=x0(xx0)n/n!称为泰勒展开公式,当 x 0 = 0 x_0 = 0 x0=0时,有 f ( x ) = ∑ n = 0 ∞ d n f ( x ) / d x n ∣ x = x 0 x n / n ! f(x) = \sum_{n=0}^\infty d^nf(x)/dx^n|_{x = x_0}x^n/n! f(x)=n=0dnf(x)/dxnx=x0xn/n!称为麦克劳林展开公式。

1.3 极限存在性
  对于 f ( x ) , g ( x ) , h ( x ) f(x),g(x),h(x) f(x),g(x),h(x),若满足 g ( x ) ≤ f ( x ) ≤ h ( x ) g(x) \le f(x) \le h(x) g(x)f(x)h(x),且 l i m   g ( x ) = l i m   h ( x ) = A lim\ g(x) = lim\ h(x) = A lim g(x)=lim h(x)=A,则 l i m   f ( x ) lim\ f(x) lim f(x)存在,且 l i m   f ( x ) = A lim\ f(x) = A lim f(x)=A,称为夹逼准则。

  若 x → + ∞ x \rightarrow +\infty x+时, f ( x ) f(x) f(x)是单调增加的,且 f ( x ) f(x) f(x)有上界,则 l i m x → + ∞   f ( x ) lim_{x \rightarrow +\infty}\ f(x) limx+ f(x)存在,反之亦然,称为有界准则。

1.4 连续与间断
  设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一邻域有定义,且 l i m x → x 0   f ( x ) = f ( x 0 ) lim_{x \rightarrow x_0}\ f(x) = f(x_0) limxx0 f(x)=f(x0)则称 f ( x ) f(x) f(x)在点 x 0 x_0 x0处连续,否则称 x 0 x_0 x0为间断点。间断点包括:
  (1)第一类间断点:左右极限均存在,包括:
    可去间断点: l i m x → x 0   f ( x ) ≠ f ( x 0 ) lim_{x \rightarrow x_0}\ f(x) \ne f(x_0) limxx0 f(x)=f(x0) f ( x 0 ) f(x_0) f(x0)不存在,使得函数不连续;
    跳跃间断点: l i m x → x 0 −   f ( x ) ≠ l i m x → x 0 +   f ( x ) lim_{x \rightarrow x_0^-}\ f(x) \ne lim_{x \rightarrow x_0^+}\ f(x) limxx0 f(x)=limxx0+ f(x),无论函数在 x 0 x_0 x0点是否有定义,而函数产生了跃度。
  (2)第二类间断点:左右极限至少有一个不存在,包括:
    无穷间断点:间断点处的极限为 ∞ \infty
    震荡间断点:间断点处的极限为震荡不存在。

1.5 数列极限
  定义数列 { x n } \{x_n\} {xn},若存在常数A,对于任意给定的 ϵ > 0 \epsilon>0 ϵ>0,总存在正整数 N N N,使得当 n > N n > N n>N时,都有 ∣ x n − A ∣ < ϵ |x_n - A| < \epsilon xnA<ϵ,记作 l i m n → ∞   x n = A lim_{n\rightarrow \infty}\ x_n = A limn xn=A也称为 x n {x_n} xn收敛于 A A A。数列极限的性质如下:
  (1)若 l i m n → ∞   x n lim_{n\rightarrow \infty}\ x_n limn xn存在,则 l i m n → ∞   x n = A ∈ R lim_{n\rightarrow \infty}\ x_n = A \in R limn xn=AR
  (2)唯一性: l i m n → ∞   x n lim_{n\rightarrow \infty}\ x_n limn xn若存在,则必唯一;
  (3)有界性: l i m n → ∞   x n lim_{n\rightarrow \infty}\ x_n limn xn若存在,,则 ∃ M > 0 \exists M > 0 M>0 ∣ x n ∣ ≤ M |x_n| \le M xnM
  (4)保号性:若 l i m n → ∞   f ( x ) = A lim_{n\rightarrow \infty}\ f(x) = A limn f(x)=A A > 0 A>0 A>0,则 n → ∞ n\rightarrow \infty n x n > 0 x_n > 0 xn>0,反之亦然;若 n → ∞ n\rightarrow \infty n x n ≥ 0 x_n \ge 0 xn0,则 A ≥ 0 A \ge 0 A0,反之亦然;
  (5)收敛的充要条件: x n x_n xn的子列 x n k x_{n_k} xnk均收敛于 A A A

  若 l i m x → x 0   f ( x ) = A lim_{x\rightarrow x_0}\ f(x) = A limxx0 f(x)=A { x n } \{x_n\} {xn} x 0 x_0 x0为极限,则 l i m n → ∞   f ( x ) = A lim_{n\rightarrow \infty}\ f(x) = A limn f(x)=A,称为数列极限的归结原则。


二、一元函数微分学

2.1 导数与微分
  设函数 y = f ( x ) y = f(x) y=f(x) x 0 x_0 x0的某邻域内有定义,当自变量由 x 0 x_0 x0变化到 x 0 + Δ x x_0 + \Delta x x0+Δx时,函数 y = f ( x ) y = f(x) y=f(x)的增量与自变量的增量之比 Δ y / Δ x = ( f ( x 0 + Δ x ) − f ( x 0 ) ) / Δ x \Delta y / \Delta x = (f(x_0 + \Delta x) - f(x_0))/ \Delta x Δy/Δx=(f(x0+Δx)f(x0))/Δx称为 f ( x ) f(x) f(x)的平均变化率。如果 Δ x → 0 \Delta x \rightarrow 0 Δx0时,平均变化率的极限 l i m Δ x → 0   Δ y / Δ x = l i m Δ x → 0   ( f ( x 0 + Δ x ) − f ( x 0 ) ) / Δ x lim_{\Delta x \rightarrow 0}\ \Delta y / \Delta x = lim_{\Delta x \rightarrow 0}\ (f(x_0 + \Delta x) - f(x_0))/ \Delta x limΔx0 Δy/Δx=limΔx0 (f(x0+Δx)f(x0))/Δx存在,则称 f ( x ) f(x) f(x) x 0 x_0 x0处可导,并称此极限值为函数 f ( x ) f(x) f(x) x 0 x_0 x0处的导数,记作 f ′ ( x ) ∣ x = x 0 f'(x)|_{x = x_0} f(x)x=x0函数 f ( x ) f(x) f(x) x 0 x_0 x0处可导的充要条件是 f ( x ) f(x) f(x) x 0 x_0 x0处的左右导数存在且相等。

  设函数 y = f ( x ) y = f(x) y=f(x) x x x的某邻域内有定义,若自变量从 x x x变化到 x + Δ x x + \Delta x x+Δx时,函数的增量可以表示为 Δ y = A Δ x + o ( Δ x ) \Delta y = A\Delta x + o(\Delta x) Δy=AΔx+o(Δx)其中 A A A Δ x \Delta x Δx无关,则称 f ( x ) f(x) f(x) x x x处可微,并将 A Δ x A\Delta x AΔx称为函数 y = f ( x ) y=f(x) y=f(x) x x x处的微分,记作 d y = A Δ x dy = A\Delta x dy=AΔx而函数 y = f ( x ) y = f(x) y=f(x) x x x处可微的充要条件是函数在 x x x处可导,有 A = f ′ ( x ) A = f'(x) A=f(x),且 d y = f ′ ( x ) Δ x dy = f'(x)\Delta x dy=f(x)Δx f ( x ) = x f(x) = x f(x)=x,有 d x = Δ x dx = \Delta x dx=Δx。故导数还可以表示为 f ′ ( x ) = d y / d x f'(x) = dy/dx f(x)=dy/dx
2.2 求导法则
  若 u = ϕ ( x ) u = \phi(x) u=ϕ(x) y = f ( u ) y = f(u) y=f(u)可导,则 Δ y / Δ u = f ′ ( u ) + α ( Δ u ) \Delta y/\Delta u = f'(u) + \alpha(\Delta u) Δy/Δu=f(u)+α(Δu)同乘 Δ u \Delta u Δu,有 Δ y = f ′ ( u ) Δ u + α ( Δ u ) Δ u \Delta y = f'(u)\Delta u + \alpha(\Delta u)\Delta u Δy=f(u)Δu+α(Δu)Δu同除 Δ x ≠ 0 \Delta x \ne 0 Δx=0 Δ y / Δ x = f ′ ( u ) Δ u / Δ x + α ( Δ u ) Δ u / Δ x \Delta y / \Delta x= f'(u)\Delta u / \Delta x + \alpha(\Delta u)\Delta u / \Delta x Δy/Δx=f(u)Δu/Δx+α(Δu)Δu/Δx Δ x → 0 \Delta x \rightarrow 0 Δx0,取极限有 d y / d x = d y / d u ⋅ d u / d x dy/dx = dy/du·du/dx dy/dx=dy/dudu/dx称为链导法则。

  设函数 f ( x ) f(x) f(x)的反函数为 ϕ ( y ) \phi(y) ϕ(y),则 f ′ ( x ) = l i m Δ x → 0 Δ y / Δ x = 1 / ( l i m Δ y → 0 Δ x / Δ y ) = 1 / ϕ ′ ( y ) f'(x) = lim_{\Delta x \rightarrow 0}\Delta y / \Delta x = 1 / (lim_{\Delta y \rightarrow 0}\Delta x / \Delta y) = 1 / \phi'(y) f(x)=limΔx0Δy/Δx=1/(limΔy0Δx/Δy)=1/ϕ(y) d y / d x = 1 / ( d x / d y ) dy / dx = 1 / (dx / dy) dy/dx=1/(dx/dy)称为反函数求导法则。

  设参数方程 x = ϕ ( t ) ; y = ψ ( t ) x = \phi(t);y = \psi(t) x=ϕ(t);y=ψ(t)可导,有 t = ϕ − 1 ( x ) t = \phi^{-1}(x) t=ϕ1(x) d y / d x = d y / d t ⋅ d t / d x = d y / d t ⋅ 1 / ( d x / d t ) dy/dx = dy/dt·dt/dx = dy/dt · 1/(dx/dt) dy/dx=dy/dtdt/dx=dy/dt1/(dx/dt)称为参数方程的求导法则。

  莱布尼茨【Leibniz】法则给出了函数乘积的高阶导数求解方法,形如 ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)} = \sum_{k=0}^n C_{n}^ku^{(n-k)}v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)

2.3 单调性与极值
  设函数 f ( x ) f(x) f(x),若存在 x 0 x_0 x0的某个邻域,使得在该邻域内任意一点 x x x,均有 f ( x ) ≤ f ( x 0 ) f(x) \le f(x_0) f(x)f(x0)成立,则称点 x 0 x_0 x0 f ( x ) f(x) f(x)的(广义)极大值点, f ( x 0 ) f(x_0) f(x0) f ( x ) f(x) f(x)的极大值;反之亦然。
  设函数 f ( x ) f(x) f(x),若存在 x 0 x_0 x0,使得在定义域内任意一点 x x x,均有 f ( x ) ≤ f ( x 0 ) f(x) \le f(x_0) f(x)f(x0)成立,则称点 x 0 x_0 x0 f ( x ) f(x) f(x)的(广义)最大值点, f ( x 0 ) f(x_0) f(x0) f ( x ) f(x) f(x)的最大值;反之亦然。

  单调性判别:若 y = f ( x ) y = f(x) y=f(x)在区间 I I I上有 f ′ ( x ) > 0 f'(x)>0 f(x)>0,则称 f ( x ) f(x) f(x) I I I上严格单调增加;反之亦然。
  极值点判别:设 f ( x ) f(x) f(x) x = x 0 x = x_0 x=x0处可导,且在 x 0 x_0 x0处取得极值,则必有 f ′ ( x 0 ) = 0 f'(x_0) = 0 f(x0)=0;若 f ( x ) f(x) f(x) x = x 0 x = x_0 x=x0处连续,在 U o ( x 0 , δ ) U^o(x_0, \delta) Uo(x0,δ)内可导,且有 x ∈ ( x 0 − δ , x 0 ) x \in (x_0 - \delta, x_0) x(x0δ,x0) f ′ ( x ) < 0 f'(x) < 0 f(x)<0 x ∈ ( x 0 , x 0 + δ ) x \in (x_0 , x_0 + \delta) x(x0,x0+δ) f ′ ( x ) > 0 f'(x) > 0 f(x)>0,则 f ( x ) f(x) f(x) x 0 x_0 x0处取得极小值;反之亦然。

2.4 凹凸性与拐点
  设函数 f ( x ) f(x) f(x)在区间 I I I上连续,若对于 I I I上任意 x 1 x_1 x1 x 2 x_2 x2两点,恒有 f ( ( x 1 + x 2 ) / 2 ) < ( f ( x 1 ) + f ( x 2 ) ) / 2 f((x_1 + x_2 )/ 2) < (f(x_1) + f(x_2)) / 2 f((x1+x2)/2)<(f(x1)+f(x2))/2则称 f ( x ) f(x) f(x) I I I上是凹(下凸)的;反之亦然。连续曲线的凹弧与凸弧的分界点成为曲线的拐点。

  凹凸性判别:若 y = f ( x ) y = f(x) y=f(x)在区间 I I I上有 f ‘ ′ ( x ) > 0 f‘'(x)>0 f(x)>0,则称 f ( x ) f(x) f(x) I I I上是凹的;反之亦然。
  拐点判别:设 f ’ ‘ ( x ) f’‘(x) f(x)存在,且在 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0))是拐点,则必有 f ′ ′ ( x 0 ) = 0 f''(x_0) = 0 f(x0)=0;若 f ( x ) f(x) f(x) x = x 0 x = x_0 x=x0处连续,在 U o ( x 0 , δ ) U^o(x_0, \delta) Uo(x0,δ)内二阶可导,且有 x ∈ ( x 0 − δ , x 0 ) x \in (x_0 - \delta, x_0) x(x0δ,x0) f ′ ′ ( x ) = t − f''(x) = t^- f(x)=t x ∈ ( x 0 , x 0 + δ ) x \in (x_0 , x_0 + \delta) x(x0,x0+δ) f ′ ′ ( x ) = t + f''(x) = t^+ f(x)=t+,有 t + t − < 0 t^+t^- < 0 t+t<0,则 ( x 0 , f ( x 0 ) ) (x_0, f(x_0)) (x0,f(x0)) f ( x ) f(x) f(x)的拐点。

2.5 导数的几何应用
  对于曲线 y = y ( x ) y = y(x) y=y(x) y ′ ( x ) ≠ 0 y'(x) \ne 0 y(x)=0,其在 ( x 0 , y 0 ) (x_0, y_0) (x0,y0)切线与法线方程分别为为 y − y 0 = y ′ ( x ) ∣ x = x 0 ( x − x 0 ) y − y 0 = − 1 / y ′ ( x ) ∣ x = x 0 ⋅ ( x − x 0 ) y - y_0 = y'(x)|_{x = x_0}(x - x_0) \\ y - y_0 = - 1 / y'(x)|_{x = x_0}·(x - x_0) yy0=y(x)x=x0(xx0)yy0=1/y(x)x=x0(xx0) l i m x → x 0 − ( x 0 + ) f ( x ) = ∞ lim_{x \rightarrow x_0^-(x_0^+)} f(x) = \infty limxx0(x0+)f(x)=,则有铅垂渐近线 x = x 0 x = x_0 x=x0 l i m x → + ∞ ( − ∞ ) f ( x ) = y 0 lim_{x \rightarrow +\infty(-\infty)} f(x) = y_0 limx+()f(x)=y0,则有水平渐近线 y = y 0 y = y_0 y=y0 l i m x → + ∞ ( − ∞ ) f ( x ) = ∞ lim_{x \rightarrow +\infty(-\infty)} f(x) = \infty limx+()f(x)=,且 l i m x → + ∞ ( − ∞ ) f ( x ) / x = k 0 lim_{x \rightarrow +\infty(-\infty)} f(x)/x = k_0 limx+()f(x)/x=k0 l i m x → + ∞ ( − ∞ ) f ( x ) − k x = b 0 lim_{x \rightarrow+\infty(-\infty)} f(x) - kx = b_0 limx+()f(x)kx=b0,则有斜渐近线 y = k 0 x + b 0 y = k_0x + b_0 y=k0x+b0
  对于曲线 y = y ( x ) y = y(x) y=y(x),曲率定量的考虑了曲线的弯曲程度,形如 k = ∣ y ′ ′ / ( 1 + y ′ 2 ) 3 / 2 ∣ k = |y'' / ( 1 + y'^2)^{3/2}| k=y/(1+y2)3/2其反映了切线倾角随弧长的变化情况。在曲线一点 M M M,以 M M M点切线为切线,以曲线在 M M M点的曲率半径 R R R为半径的圆称为曲线在 M M M点的曲率圆,其中, R = 1 / k R = 1 / k R=1/k

2.6 中值定理
  设函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,则函数有界[m, M],其中 m m m M M M分别是函数在 [ a , b ] [a, b] [a,b]上的最大值与最小值,称为函数的有界性定理。
  设函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,函数有界[m, M],当有 m ≤ μ ≤ M m \le \mu \le M mμM,则 ∃ ξ ∈ [ a , b ] \exist \xi \in [a, b] ξ[a,b],使得 f ( ξ ) = μ f(\xi) = \mu f(ξ)=μ,称为函数的介值定理。
  设函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,当 a < x 1 < . . . < x n < b a < x_1 < ... < x_n < b a<x1<...<xn<b时,在 [ x 1 , x n ] [x_1, x_n] [x1,xn]内至少 ∃ ξ \exist \xi ξ,使得 f ( ξ ) = ( f ( x 1 ) + . . . + f ( x n ) ) / n f(\xi) = (f(x_1) + ... + f(x_n)) / n f(ξ)=(f(x1)+...+f(xn))/n,称为函数的平均值定理。
  设函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,当 f ( a ) f ( b ) < 0 f(a)f(b)<0 f(a)f(b)<0时,则 ∃ ξ ∈ ( a , b ) \exist\xi\in (a, b) ξ(a,b),使得 f ( ξ ) = 0 f(\xi) = 0 f(ξ)=0,称为函数的零点定理。
  设函数 f ( x ) f(x) f(x) U ( ξ ) U(\xi) U(ξ)内有定义且可导,如果对于任意的 x ∈ U ( ξ ) x \in U(\xi) xU(ξ),都有 f ( x ) ≥ ( ≤ ) f ( ξ ) f(x) \ge(\le) f(\xi ) f(x)()f(ξ),则 f ′ ( ξ ) = 0 f'(\xi) = 0 f(ξ)=0,称为费马引理。
  设函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,在 ( a , b ) (a, b) (a,b)内可导,且有 f ( a ) = f ( b ) f(a) = f(b) f(a)=f(b),则 ∃ ξ ∈ ( a , b ) \exist \xi \in (a, b) ξ(a,b),使得 f ′ ( ξ ) = 0 f'(\xi) = 0 f(ξ)=0,称为罗尔定理。
  设函数 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,在 ( a , b ) (a, b) (a,b)内可导,则 ∃ ξ ∈ ( a , b ) \exist \xi \in (a, b) ξ(a,b),使得 f ′ ( ξ ) = ( f ( b ) − f ( a ) ) / ( b − a ) f'(\xi) = (f(b) - f(a))/(b - a) f(ξ)=(f(b)f(a))/(ba)称为拉格朗日中值定理。
  设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) [ a , b ] [a, b] [a,b]上连续,在 ( a , b ) (a, b) (a,b)内可导, g ′ ( x ) ≠ 0 g'(x) \ne 0 g(x)=0,则 ∃ ξ ∈ ( a , b ) \exist \xi \in (a, b) ξ(a,b),使得 f ′ ( ξ ) / g ′ ( ξ ) = ( f ( b ) − f ( a ) ) / ( g ( b ) − g ( a ) ) f'(\xi)/g'(\xi) = (f(b) - f(a))/(g(b) - g(a)) f(ξ)/g(ξ)=(f(b)f(a))/(g(b)g(a))称为柯西中值定理。


三、一元函数积分学

3.1 积分
  设函数 f ( x ) f(x) f(x)定义在某区间 I I I上,若存在可导函数 F ( x ) F(x) F(x),对于该区间内任一点有 F ′ ( x ) = f ( x ) F'(x) = f(x) F(x)=f(x)成立,称 F ( x ) F(x) F(x) f ( x ) f(x) f(x)在区间 I I I上的原函数,并称 ∫ f ( x ) d x = F ( x ) + C \int f(x)dx = F(x) + C f(x)dx=F(x)+C f ( x ) f(x) f(x)在区间 I I I上的不定积分。
  若 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续,则在该区间内必存在原函数 F ( x ) F(x) F(x)

  设函数 f ( x ) f(x) f(x)定义在某区间 [ a , b ] [a, b] [a,b]上,将区间 [ a , b ] [a, b] [a,b]的长度 n n n等分,并计算每一等分区间内的 f ( x ) f(x) f(x) x x x轴围城的矩形面积和,便可以得到 S = ∑ i = 1 n f ( a + ( b − a ) / n ⋅ i ) ⋅ ( b − a ) / n S = \sum_{i = 1}^n f(a + (b - a)/n·i)·(b - a)/n S=i=1nf(a+(ba)/ni)(ba)/n n → ∞ n \rightarrow \infty n时,称为 f ( x ) f(x) f(x)在区间 [ a , b ] [a, b] [a,b]上的黎曼积分,形如 ∫ a b f ( x ) d x = l i m n → ∞ ∑ i = 1 n f ( a + ( b − a ) / n ⋅ i ) ⋅ ( b − a ) / n \int_a^b f(x)dx = lim_{n \rightarrow \infty}\sum_{i = 1}^n f(a + (b - a)/n·i)·(b - a)/n abf(x)dx=limni=1nf(a+(ba)/ni)(ba)/n也称为 f ( x ) f(x) f(x)在区间 [ a , b ] [a, b] [a,b]上的定积分。
  如果 F ( x ) F(x) F(x) [ a , b ] [a, b] [a,b]区间上连续函数 f ( x ) f(x) f(x)的一个原函数,则 ∫ a b f ( x ) d x = F ( b ) − F ( a ) \int_a^b f(x)dx = F(b) - F(a) abf(x)dx=F(b)F(a)称为牛顿-莱布尼茨公式。

  当 x x x [ a , b ] [a, b] [a,b]上变动时,对于每一个 x x x,积分 ∫ a x f ( t ) d t \int_a^xf(t)dt axf(t)dt就有一个对应的值,记作 Φ ( x ) = ∫ a x f ( t ) d t \Phi(x) = \int_a^xf(t)dt Φ(x)=axf(t)dt称为变(上)限积分,而上下限不变时即定(限)积分。

  定积分存在的充分条件为 f ( x ) f(x) f(x) [ a , b ] [a, b] [a,b]上连续或有界且有有限个间断点。但不满足上述条件时,积分依然可能存在,称为反常积分。
  当区间不存在有限性,称为无穷区间的反常积分,定义为 ∫ a + ∞ f ( x ) d x = l i m b → + ∞ ∫ a b f ( x ) d x \int_a^{+\infty}f(x)dx = lim_{b \rightarrow +\infty}\int_a^bf(x)dx a+f(x)dx=limb+abf(x)dx l i m x → + ∞ F ( x ) lim_{x \rightarrow +\infty}F(x) limx+F(x)存在时,称反常积分 ∫ a + ∞ f ( x ) d x \int_a^{+\infty}f(x)dx a+f(x)dx收敛。
  当函数不存在有界性,称为无界函数的反常积分,定义为 ∫ a b f ( x ) d x = l i m ϵ → 0 ∫ a b − ϵ f ( x ) d x \int_a^bf(x)dx = lim_{\epsilon \rightarrow 0}\int_a^{b-\epsilon}f(x)dx abf(x)dx=limϵ0abϵf(x)dx其中, l i m x → b − = ∞ lim_{x \rightarrow b^-} = \infty limxb=,称 b b b为瑕点。当 l i m x → b F ( x ) lim_{x \rightarrow b}F(x) limxbF(x)存在时,称反常积分 ∫ a b f ( x ) d x \int_a^bf(x)dx abf(x)dx收敛。

3.2 积分法
  第一换元法,形如 ∫ f ( g ( x ) ) g ′ ( x ) d x = ∫ f ( g ( x ) ) d g ( x ) = ∫ f ( u ) d u \begin{aligned} \int f(g(x))g'(x)dx &= \int f(g(x))dg(x) \\ &= \int f(u)du \end{aligned} f(g(x))g(x)dx=f(g(x))dg(x)=f(u)du  第二换元法,形如 ∫ f ( x ) d x = ∫ f ( g ( u ) ) d g ( u ) = ∫ f ( g ( u ) ) g ′ ( u ) d u \begin{aligned} \int f(x)dx &= \int f(g(u))dg(u)\\ &= \int f(g(u))g'(u)du \end{aligned} f(x)dx=f(g(u))dg(u)=f(g(u))g(u)du  分部积分法,形如 ∫ u d v = u v − ∫ v d u \int udv = uv - \int vdu udv=uvvdu  华里士公式,形如 ∫ 0 π / 2 s i n n x d x = ∫ 0 π / 2 c o s n x d x =   ( n − 1 ) / n ⋅ . . . ⋅ 2 / 3 ⋅ 1 , n = 2 N + 1   ( n − 1 ) / n ⋅ . . . ⋅ 1 / 2 ⋅ π / 2 , n = 2 N \begin{aligned} \int_0^{\pi/2}sin^nxdx = \int_0^{\pi/2}cos^nxdx = &\ (n-1)/n·...·2/3·1,n = 2N+1 \\ &\ (n -1)/n·...·1/2·\pi/2, n = 2N \end{aligned} 0π/2sinnxdx=0π/2cosnxdx= (n1)/n...2/31,n=2N+1 (n1)/n...1/2π/2,n=2N


四、常微分方程

4.1 微分方程
  含有未知函数及其导数的方程称为微分方程,形如 F ( x , y , y ′ , . . . , y ( n ) ) = 0 F(x, y, y', ..., y^{(n)}) = 0 F(x,y,y,...,y(n))=0其中,未知函数是一元函数的微分方程称为常微分方程。使得方程成为恒等式的函数称为微分方程的解,包括通解特解

4.2 一阶微分方程
  考虑一阶线性微分方程,形如 y ′ + p ( x ) y = q ( x ) y' + p(x)y = q(x) y+p(x)y=q(x)同乘 e x p { ∫ p ( x ) d x } exp\{\int p(x)dx\} exp{p(x)dx},得 y ′ e x p { ∫ p ( x ) d x } + p ( x ) y e x p { ∫ p ( x ) d x } = q ( x ) e x p { ∫ p ( x ) d x } y'exp\{\int p(x)dx\} + p(x)yexp\{\int p(x)dx\} = q(x)exp\{\int p(x)dx\} yexp{p(x)dx}+p(x)yexp{p(x)dx}=q(x)exp{p(x)dx} d [ y e x p { ∫ p ( x ) d x } ] / d x = q ( x ) e x p { ∫ p ( x ) d x } d[yexp\{\int p(x)dx\}]/dx = q(x)exp\{\int p(x)dx\} d[yexp{p(x)dx}]/dx=q(x)exp{p(x)dx} x x x积分,有 y e x p { ∫ p ( x ) d x } = ∫ q ( x ) e x p { ∫ p ( x ) d x } d x + C yexp\{\int p(x)dx\} = \int q(x)exp\{\int p(x)dx\}dx + C yexp{p(x)dx}=q(x)exp{p(x)dx}dx+C y = e x p { − ∫ p ( x ) d x } [ ∫ q ( x ) e x p { ∫ p ( x ) d x } d x + C ] y = exp\{-\int p(x)dx\} [\int q(x)exp\{\int p(x)dx\}dx + C] y=exp{p(x)dx}[q(x)exp{p(x)dx}dx+C]  再考虑伯努利方程,形如 y ′ + p ( x ) y = q ( x ) y n y' + p(x)y = q(x)y^n y+p(x)y=q(x)yn y − n y ′ + p ( x ) y 1 − n = q ( x ) y^{-n}y' + p(x)y^{1-n} = q(x) yny+p(x)y1n=q(x) z = y 1 − n z = y^{1-n} z=y1n,有 d z / d x = d z / d y ⋅ d y / d x = ( 1 − n ) y − n d y / d x dz/dx = dz/dy·dy/dx = (1-n)y^{-n}dy/dx dz/dx=dz/dydy/dx=(1n)yndy/dx d z / d x + ( 1 − n ) p ( x ) z = ( 1 − n ) q ( x ) dz/dx + (1-n)p(x)z = (1-n)q(x) dz/dx+(1n)p(x)z=(1n)q(x)转化为一阶线性微分方程。

4.3 二阶微分方程
  考虑 y ′ ′ = f ( x , y ′ ) y'' = f(x, y') y=f(x,y),令 y ′ = p , y ′ ′ = p ′ y' = p, y'' = p' y=p,y=p,则 p ′ = f ( x , p ) p' = f(x, p) p=f(x,p),根据一阶线性微分方程,有 p = ϕ ( x , C 1 ) p = \phi(x, C_1) p=ϕ(x,C1) y = ∫ p d x = ∫ ϕ ( x , C 1 ) + C 2 y = \int pdx = \int \phi(x, C_1) + C_2 y=pdx=ϕ(x,C1)+C2  考虑 y ′ ′ = f ( y , y ′ ) y'' = f(y, y') y=f(y,y),令 y ′ = p , y ′ ′ = p ′ y' = p, y'' = p' y=p,y=p,则有 y ′ ′ = d p / d y ⋅ d y / d x = d p / d y ⋅ p y'' = dp/dy·dy/dx = dp/dy·p y=dp/dydy/dx=dp/dyp d p / d y ⋅ p = f ( y , p ) dp/dy·p = f(y, p) dp/dyp=f(y,p)根据一阶线性微分方程,有 p = ϕ ( y , C 1 ) p = \phi(y, C_1) p=ϕ(y,C1) y = ∫ ϕ ( y , C 1 ) d y + C 2 y = \int \phi(y, C_1)dy + C_2 y=ϕ(y,C1)dy+C2
4.4 高阶微分方程
  若微分方程 F ( x , y , y ′ , y ′ ′ ) = 0 F(x, y, y', y'') = 0 F(x,y,y,y)=0形如 y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) y'' + p(x)y' + q(x)y = f(x) y+p(x)y+q(x)y=f(x)称为二阶线性微分方程。若 f ( x ) f(x) f(x) = 0,称其为齐次方程,否则成为非齐次方程
  若 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)是方程 F ( x , y , y ′ , y ′ ′ ) = 0 F(x, y, y', y'') = 0 F(x,y,y,y)=0的两个解,且 y 1 ( x ) / y 2 ( x ) ≠ C y_1(x)/y_2(x) \ne C y1(x)/y2(x)=C,则称 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)是该方程线性无关的解,且 y T ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) y^T(x) = C_1y_1(x) + C_2y_2(x) yT(x)=C1y1(x)+C2y2(x)是方程的通解,且若 y ∗ ( x ) y^*(x) y(x)是方程 F ( x , y , y ′ , y ′ ′ ) = f ( x ) F(x, y, y', y'') = f(x) F(x,y,y,y)=f(x)特解,则 y ( x ) = y T ( x ) + y ∗ ( X ) y(x) = y^T(x) + y^*(X) y(x)=yT(x)+y(X)是方程 F ( x , y , y ′ , y ′ ′ ) = f ( x ) F(x, y, y', y'') = f(x) F(x,y,y,y)=f(x)的通解,其中 y T ( x ) y^T(x) yT(x)是方程 F ( x , y , y ′ , y ′ ′ ) = 0 F(x, y, y', y'') = 0 F(x,y,y,y)=0的通解。
  考虑微分方程 y ′ ′ + p y ′ + q y = 0 y'' + py' + qy = 0 y+py+qy=0的特征方程,形如 λ 2 + p λ + q = 0 \lambda^2 + p\lambda + q = 0 λ2+pλ+q=0特征方程的解与微分方程的通解有如下关系:
  (1)若 p 2 − 4 q > 0 p^2 - 4q > 0 p24q>0,即 λ 1 ≠ λ 2 \lambda_1 \ne \lambda_2 λ1=λ2,则 y T = C 1 e x p { λ 1 x } + C 2 e x p { λ 2 x } y^T = C_1exp\{\lambda_1x\} + C_2exp\{\lambda_2x\} yT=C1exp{λ1x}+C2exp{λ2x}
  (2)若 p 2 − 4 q = 0 p^2 - 4q = 0 p24q=0,即 λ 1 = λ 2 \lambda_1 = \lambda_2 λ1=λ2,则 y T = ( C 1 + C 2 x ) e x p { λ x } y^T = (C_1 + C_2x)exp\{\lambda x\} yT=(C1+C2x)exp{λx}
  (3)若 p 2 − 4 q < 0 p^2 - 4q < 0 p24q<0,即 λ 1 , 2 = α ± β i \lambda_{1, 2}= \alpha \pm \beta i λ1,2=α±βi,则 y T = e x p { α x } ( C 1 c o s β x + C 2 s i n β x ) y^T = exp\{\alpha x\}(C_1cos\beta x+C_2sin\beta x ) yT=exp{αx}(C1cosβx+C2sinβx)  考虑微分方程 y ′ ′ + p y ′ + q y = f ( x ) y'' + py' + qy = f(x) y+py+qy=f(x),其特解与 f ( x ) f(x) f(x),特征方程解 λ 1 \lambda_1 λ1 λ 2 \lambda_2 λ2有如下关系:
  (1)若 f ( x ) = P n ( x ) e x p { α x } f(x) = P_n(x)exp\{\alpha x\} f(x)=Pn(x)exp{αx} P n ( x ) P_n(x) Pn(x)是以 n n n为最高次项的多项式,则 y ∗ = Q n ( x ) e x p { α x } x k y^* = Q_n(x)exp\{\alpha x\}x^k y=Qn(x)exp{αx}xk其中, k = 1 { α = λ 1 } + 1 { α = λ 2 } k = 1\{\alpha = \lambda_1\} + 1\{\alpha = \lambda_2\} k=1{α=λ1}+1{α=λ2}
  (2)若 f ( x ) = e x p { α x } [ P m ( x ) c o s β x + P n ( x ) s i n β x ] f(x) = exp\{\alpha x\}[P_m(x)cos\beta x + P_n(x)sin \beta x] f(x)=exp{αx}[Pm(x)cosβx+Pn(x)sinβx],则 y ∗ = e x p { α x } [ Q l ( x ) c o s β x + R l ( x ) s i n β x ] x k y^* = exp\{\alpha x\}[Q_l(x)cos\beta x + R_l(x)sin \beta x]x^k y=exp{αx}[Ql(x)cosβx+Rl(x)sinβx]xk其中, k = 1 { α + β i = λ 1 , 2 } k = 1\{\alpha + \beta i = \lambda_{1,2}\} k=1{α+βi=λ1,2} l = m a x { m , n } l = max\{m, n\} l=max{m,n}


五、无穷级数

5.1 无穷级数
  定义无穷数列 u 1 u_1 u1 u 2 u_2 u2,…, u n u_n un,…,则 ∑ n = 1 ∞ u n = u 1 + . . . + u n + . . . \sum_{n=1}^{\infty}u_n = u_1 + ... + u_n + ... n=1un=u1+...+un+...称为无穷级数,其中 S n = ∑ i = 1 n u i S_n = \sum_{i=1}^nu_i Sn=i=1nui称为级数的部分和,数列 { S n } \{S_n\} {Sn}称为级数的部分和数列,且 l i m n → ∞ S n = ∑ n = 1 ∞ u n lim_{n \rightarrow\infty}S_n = \sum_{n=1}^{\infty}u_n limnSn=n=1un  若 l i m n → ∞ S n = M lim_{n \rightarrow\infty}S_n = M limnSn=M,则称级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un收敛,反之发散

5.2 无穷级数的敛散性
  若 u n ≥ 0 u_n \ge 0 un0,则称级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un正项级数,正项级数的敛散性判别如下:
  -正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un收敛的充要条件为其部分和数列 { S n } \{S_n\} {Sn}有界;
  -对于两个正项级数的项 u n u_n un v n v_n vn,若从某项起,有 u n ≤ v n u_n \le v_n unvn,则有:
    -当 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn收敛时, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un必收敛;
    -当 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un发散时, ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn必发散。
  -对于两个正项级数的项 u n u_n un v n v_n vn,若 l i m n → ∞ u n / v n = A lim_{n \rightarrow\infty} u_n/v_n = A limnun/vn=A,则有:
    -当 A = 0 A = 0 A=0时,若 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn收敛, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un必收敛;
    -当 A = + ∞ A = +\infty A=+时,若 ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn发散, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un必发散;
    -当 0 < A < + ∞ 0 < A < +\infty 0<A<+时, ∑ n = 1 ∞ v n \sum_{n=1}^{\infty}v_n n=1vn ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un的敛散性一致。
  -达朗贝尔判别法,即对于正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un,若 l i m n → ∞ u n + 1 / u n = ρ lim_{n \rightarrow\infty} u_{n+1}/u_n = \rho limnun+1/un=ρ,则有:
    -当 ρ < 1 \rho < 1 ρ<1时, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un收敛;
    -当 ρ > 1 \rho > 1 ρ>1时, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un发散。.
  -柯西判别法,即对于正项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un,若 l i m n → ∞ u n 1 / n = ρ lim_{n \rightarrow\infty} u_n^{1/n} = \rho limnun1/n=ρ,则有:
    -当 ρ < 1 \rho < 1 ρ<1时, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un收敛;
    -当 ρ > 1 \rho > 1 ρ>1时, ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un发散。.

  若级数各项正负相间出现,形如 ∑ n = 1 ∞ ( − 1 ) n − 1 u n = u 1 − u 2 + . . . + ( − 1 ) n − 1 u n + . . . \sum_{n=1}^{\infty}(-1)^{n-1}u_n = u_1 - u_2 + ... + (-1)^{n-1}u_n + ... n=1(1)n1un=u1u2+...+(1)n1un+...其中, u n > 0 u_n > 0 un>0,称为交错级数。交错级数的敛散性判别为莱布尼茨判别法,对于 ∑ n = 1 ∞ ( − 1 ) n − 1 u n \sum_{n=1}^{\infty}(-1)^{n-1}u_n n=1(1)n1un,若 { u n } \{u_n\} {un}单调不增,且 l i m n → ∞ u n = 0 lim_{n \rightarrow\infty} u_n = 0 limnun=0,则交错级数收敛。

  若级数的各项任意,称为任意项级数。对于任意项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un,称 ∑ n = 1 ∞ ∣ u n ∣ \sum_{n=1}^{\infty}|u_n| n=1un为其绝对值级数。若任意项级数的绝对值级数收敛,称为绝对收敛,且绝对收敛的任意项级数收敛;若任意项级数的绝对值级数发散,但任意项级数收敛,称为条件收敛

5.3 幂级数
  设定义在 I I I上的函数数列 { u n ( x ) } \{u_n(x)\} {un(x)},则称 u 1 ( x ) + . . . + u n ( x ) + . . . u_1(x) + ... + u_n(x) + ... u1(x)+...+un(x)+...为定义在 I I I上的函数项级数,记为 ∑ n = 1 ∞ u n ( x ) \sum_{n=1}^\infty u_n(x) n=1un(x)。当 x = x 0 x = x_0 x=x0时,其转换为常数项级数 ∑ n = 1 ∞ u n \sum_{n=1}^{\infty}u_n n=1un

  当函数项级数的函数项为n次幂函数,称之为幂级数,形如 ∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + . . . + a n ( x − x 0 ) n + . . . \sum_{n=0}^\infty a_n(x - x_0)^n = a_0 + a_1(x - x_0) + ... + a_n(x - x_0)^n + ... n=0an(xx0)n=a0+a1(xx0)+...+an(xx0)n+...给定 x k ∈ I x_k \in I xkI,若 ∑ n = 0 ∞ a n ( x k − x 0 ) n \sum_{n=0}^\infty a_n(x_k - x_0)^n n=0an(xkx0)n收敛,则称 x k x_k xk收敛点;反之称为发散点。函数项级数的收敛点集合称为收敛域

  当 ∑ n = 0 ∞ a n x n \sum_{n = 0}^\infty a_nx^n n=0anxn x = x 1 , x 1 ≠ 0 x = x_1, x_1 \ne 0 x=x1,x1=0处收敛,对于满足 ∣ x ∣ < ∣ x 1 ∣ |x| < |x_1| x<x1的一切 x x x,都有 ∑ n = 0 ∞ a n x n \sum_{n = 0}^\infty a_nx^n n=0anxn绝对收敛;在 x = x 2 , x 2 ≠ 0 x = x_2, x_2 \ne 0 x=x2,x2=0处发散,对于满足 ∣ x ∣ > ∣ x 2 ∣ |x| > |x_2| x>x2的一切 x x x,都有 ∑ n = 0 ∞ a n x n \sum_{n = 0}^\infty a_nx^n n=0anxn发散,称为阿贝尔定理

  若对于 ∑ n = 0 ∞ a n x n \sum_{n = 0}^\infty a_nx^n n=0anxn,有 l i m n → ∞ ∣ a n + 1 / a n ∣ = ρ lim_{n \rightarrow\infty} |a_{n + 1} / a_n| = \rho limnan+1/an=ρ,则令 R = { 1 / ρ , ρ ≠ 0 + ∞ , ρ = 0 0 , ρ = + ∞ R = \left\{\begin{aligned} &1 / \rho, &&\rho \ne 0 \\ &+\infty, &&\rho = 0 \\ &0, &&\rho = +\infty \\ \end{aligned}\right. R=1/ρ,+,0,ρ=0ρ=0ρ=+称为收敛半径,即 ∑ n = 0 ∞ a n x n \sum_{n = 0}^\infty a_nx^n n=0anxn ( − R , R ) (-R, R) (R,R)内收敛,而 x = ± R x = \pm R x=±R处的敛散性需要单独考察,从而得到了 ∑ n = 0 ∞ a n x n \sum_{n = 0}^\infty a_nx^n n=0anxn的收敛域。
   f ( x ) f(x) f(x)展开为泰勒级数或麦克劳林级数,都称为函数展开为幂级数。

5.4 傅里叶级数
  正弦函数 A s i n ( w x + ϕ ) Asin(wx+\phi) Asin(wx+ϕ)也叫做谐函数。以 2 π 2\pi 2π为周期的函数 f ( x ) f(x) f(x)在区间 [ − π , π ] [-\pi, \pi] [π,π]上,能够展开为可逐项积分的三角级数 f ( x ) = a 0 / 2 + ∑ n = 1 ∞ ( a n c o s n x + b n s i n n x ) f(x) = a_0/2 + \sum_{n=1}^\infty(a_n cosnx + b_nsinnx) f(x)=a0/2+n=1(ancosnx+bnsinnx)其中 { a 0 = 1 / π ∫ − π π f ( x ) d x a n = 1 / π ∫ − π π f ( x ) c o s n x d x b n = 1 / π ∫ − π π f ( x ) s i n n x d x , n = 1 , 2 , . . . \left\{\begin{aligned} &a_0 = 1/\pi \int_{-\pi}^\pi f(x)dx \\ &a_n = 1/\pi \int_{-\pi}^\pi f(x)cosnxdx \\ &b_n = 1/\pi \int_{-\pi}^\pi f(x)sinnxdx, n = 1, 2, ... \end{aligned}\right. a0=1/πππf(x)dxan=1/πππf(x)cosnxdxbn=1/πππf(x)sinnxdx,n=1,2,...称为 f ( x ) f(x) f(x)傅里叶级数
  如果以 2 π 2\pi 2π为周期的函数 f ( x ) f(x) f(x)在区间 [ − π , π ] [-\pi, \pi] [π,π]上满足狄利克雷条件
  -除有限个第一类间断点外,处处连续;
  -分段单调,单调区间个数有限。
f ( x ) f(x) f(x)的傅里叶级数在区间 [ − π , π ] [-\pi, \pi] [π,π]上处处收敛,且 f ( x ) = { f ( x ) , x ∈ { x ∣ x   i s   c o n t i n u i t y   p o i n t } 1 / 2 [ f ( x − ) + f ( x + ) ] , x ∈ { x ∣ x   i s   d i s c o n t i n u i t y   p o i n t   o f   Ⅰ } 1 / 2 [ f ( π − ) + f ( π + ) ] , x = ± π f(x) = \left\{\begin{aligned} &f(x), &&x \in \{x | x\ is\ continuity\ point\}\\ &1/2[f(x^-) + f(x^+)], &&x \in \{x | x\ is\ discontinuity\ point\ of\ Ⅰ\} \\ &1/2[f(\pi^-) + f(\pi^+)], && x = \pm \pi \\ \end{aligned}\right. f(x)=f(x),1/2[f(x)+f(x+)]1/2[f(π)+f(π+)]x{xx is continuity point}x{xx is discontinuity point of }x=±π

  当 f ( x ) f(x) f(x)是以 2 π 2\pi 2π为周期的奇函数时, f ( x ) f(x) f(x)的傅里叶级数为 ∑ n = 1 ∞ b n s i n n x \sum_{n=1}^\infty b_nsinnx n=1bnsinnx,称之为正弦级数;当 f ( x ) f(x) f(x) 2 π 2\pi 2π为周期的偶函数时, f ( x ) f(x) f(x)的傅里叶级数为 a 0 / 2 + ∑ n = 1 ∞ a n c o s n x a_0/2 + \sum_{n=1}^\infty a_n cosnx a0/2+n=1ancosnx,称之为余弦级数

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值