第八讲 一元积分概念与计算

重点

概念

重中之重的一讲

考研对概念要求非常深刻

不定积分

原函数与不定积分

不定积分存在定理
  1. 连续函数必有原函数
  2. 振荡间断点可能有原函数
  3. 含第一类间断点、无穷间断点没有

定积分

概念

存在定理

性质

不定积分

概念

性质

求导公式

计算

基本积分公式

凑微分法

换元法

分部积分法

有理函数积分

考点

在这里插入图片描述

概念

不定积分

原函数

一个

∀ x ∈ I , F ( x ) ′ = f ( x ) \forall x \in I ,F(x)'=f(x) xIF(x)=f(x)

全体

F ( x ) ′ = f ( x ) + C F(x)'=f(x)+C F(x)=f(x)+C

不定积分

∫ f ( x ) d x = F ( x ) + C \int f(x) \mathrm{d} x=F(x)+C f(x)dx=F(x)+C f ( x ) f(x) f(x) 在区间 I I I 上的不定积分

存在定理

连续函数必有原函数

在这里插入图片描述

振荡间断点可能有原函数
含第一类间断点、无穷间断点没有

在这里插入图片描述

在这里插入图片描述

定积分

黎曼积分

分割、近似、求和、取极限

在这里插入图片描述

精准定义

${\huge {\color{Purple} \int_{a}^{b} f(x) \mathrm{d} x=\lim {n \rightarrow \infty} \sum{i=1}^{n} f\left(a+\frac{b-a}{n} i\right) \frac{b-a}{n}} } $

怎么用
  1. 提$\frac{1}{n} $

  2. 凑$\frac{i}{n} $

  3. 由于  i n = 0 + 1 − 0 n i , 故  i n  可以读作 0 到  1  上的  x \text {由于 } \frac{i}{n}=0+\frac{1-0}{n} i \text {, 故 }\frac{i}{n} \text { 可以读作 0 到 } 1 \text { 上的 } x 由于 ni=0+n10i ni 可以读作 0  1 上的 x

    且  1 n = 1 − 0 n \text {且 } \frac{1}{n}=\frac{1-0}{n}  n1=n10

    读作“0 到  1  上的  d x  ”, 于是,“凑定义”完毕  \text {读作“0 到 } 1 \text { 上的 } \mathrm{d} x \text { ”, 于是,“凑定义”完毕 } 读作“0  1 上的 dx ”, 于是,“凑定义完毕 

    在这里插入图片描述

【注】
  1. 图在 x x x轴下面时,定积分值为负

  2. a < b  时,  d x > 0 ; a > b  时,  d x < 0 a<b \text { 时, } \mathrm{d} x>0 ; a>b \text { 时, } \mathrm{d} x<0 a<b dx>0;a>b dx<0

  3. ∫ a b f ( x ) d x = − ∫ b a f ( x ) d x \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x abf(x)dx=baf(x)dx

    存在定理

    连续存在

    单调存在

    有界,有限个间断点存在

    ​ 可去,跳跃、振荡(不包含无界振荡)

    可积函数必有界

    性质

    可加性

     无论  a , b , c  的大小如何, 总有  ∫ a b f ( x ) d x = ∫ a c f ( x ) d x + ∫ a b f ( x ) d x \text { 无论 } a, b, c \text { 的大小如何, 总有 } \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x+\int_{a}^{b} f(x) \mathrm{d} x  无论 a,b,c 的大小如何总有 abf(x)dx=acf(x)dx+abf(x)dx

    首尾呼应即可

    保号性

     若在区间  [ a , b ]  上  f ( x ) ⩽ g ( x ) , 则有  ∫ a b f ( x ) d x ⩽ ∫ a b g ( x ) d x \text { 若在区间 }[a, b] \text { 上 } f(x) \leqslant g(x) \text {, 则有 } \int_{a}^{b} f(x) \mathrm{d} x \leqslant \int_{a}^{b} g(x) \mathrm{d} x  若在区间 [a,b]  f(x)g(x)则有 abf(x)dxabg(x)dx

    面积抵消小于不抵消

    ∣ ∫ a b f ( x ) d x ∣ ⩽ ∫ a b ∣ f ( x ) ∣ d x \left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leqslant \int_{a}^{b}|f(x)| \mathrm{d} x abf(x)dx abf(x)dx

    被积函数非负

    设 f ( x ) 是 [ a , b ] 上非负的连续函数 , 只要 f ( x ) 不恒等于零 , 则必有 ∫ a b f ( x ) d x > 0 设 f(x) 是 [a, b] 上非负的连续函数, 只要 f(x) 不恒等于零, 则必有\int_{a}^{b} f(x) \mathrm{d} x>0 f(x)[a,b]上非负的连续函数,只要f(x)不恒等于零,则必有abf(x)dx>0

    估值定理

    设 M , m 分别是 f ( x ) 在 [ a , b ] 上的最大值和最小值 , L 为区间 [ a , b ] 的长度 , 则有 设 M, m 分别是 f(x) 在 [a, b] 上的最大值和最小值, L 为区间 [a, b] 的长度, 则有 M,m分别是f(x)[a,b]上的最大值和最小值,L为区间[a,b]的长度,则有 m L ⩽ ∫ a b f ( x ) d x ⩽ M L m L \leqslant \int_{a}^{b} f(x) \mathrm{d} x \leqslant M L mLabf(x)dxML

    将线推向面

    中值定理

    设 f ( x ) 在闭区间 [ a , b ] 上连续 , 则在 [ a , b ] 上至少存在一点 ξ , 使得 ∫ a b f ( x ) d x = f ( ξ ) ( b − a ) . 设 f(x) 在闭区间 [a, b] 上连续, 则在 [a, b] 上至少存在一点 \xi , 使得\int_{a}^{b} f(x) \mathrm{d} x=f(\xi)(b-a) . f(x)在闭区间[a,b]上连续,则在[a,b]上至少存在一点ξ,使得abf(x)dx=f(ξ)(ba).

变限积分

概念

变上限积分函数

Φ ( x ) = ∫ a x f ( t ) d t ( a ⩽ x ⩽ b ) \Phi(x)=\int_{a}^{x} f(t) \mathrm{d} t(a \leqslant x \leqslant b) Φ(x)=axf(t)dt(axb)

其中 x x x为求导变量, t t t为积分变量

换元要三换

性质

函数 f ( x ) 在 [ a , b ] 上可积 , 则函数 F ( x ) = ∫ a x f ( t ) d t 在 [ a , b ] 上连续 函数 f(x) 在 [a, b] 上可积, 则函数 F(x)=\int_{a}^{x} f(t) \mathrm{d} t 在 [a, b] 上连续 函数f(x)[a,b]上可积,则函数F(x)=axf(t)dt[a,b]上连续

函数 f ( x ) 在 [ a , b ] 上连续 , 则函数 F ( x ) = ∫ x f ( t ) d t 在 [ a , b ] 上可导 函数 f(x) 在 [a, b] 上连续,则函数 F(x)=\int^{x} f(t) \mathrm{d} t 在 [a, b] 上可导 函数f(x)[a,b]上连续,则函数F(x)=xf(t)dt[a,b]上可导

可导 → \to 连续 → \to 可积 → \to 有界

套上变限积分,性质升一级

证明
求导

在这里插入图片描述

反常积分

概念

定积分,区间有限,函数有界

在这里插入图片描述

破坏积分区间1·

无穷区间的反常积分

在这里插入图片描述

被积函数无界

无界函数的反常积分

在这里插入图片描述

反推不一定

∫ a + ∞ f ( x ) d x  收敛不一定能推出  lim ⁡ x → + ∞ f ( x ) = 0 .  \int_{a}^{+\infty} f(x) \mathrm{d} x \text { 收敛不一定能推出 } \lim _{x \rightarrow+\infty} f(x)=0 \text {. } a+f(x)dx 收敛不一定能推出 limx+f(x)=0

f ( x ) = { n , x ∈ [ n , n + 1 n ⋅ 2 n ] , n = 1 , 2 , ⋯ 0 ,  其他,  {\LARGE f(x)=\left\{\begin{array}{ll}n, & x \in\left[n, n+\frac{1}{n \cdot 2^{n}}\right], n=1,2, \cdots \\0, & \text { 其他, }\end{array}\right.} f(x)= n,0,x[n,n+n2n1],n=1,2, 其他

区间长度为 1 n ⋅ 2 n \frac{1}{n \cdot 2^{n}} n2n1

高为 n n n

面积为 1 2 n \frac{1}{2^{n}} 2n1

此处区间收敛,函数发散

区间收敛程度较大 → \to 整体收敛

敛散性

无穷区间

定义

在这里插入图片描述

在这里插入图片描述

无界函数

在这里插入图片描述

敛散性判别

在这里插入图片描述

计算

常用积分公式

【注】

s e c x = 1 c o s x {\color{Red} {\Large secx=\frac{1}{cosx}}} secx=cosx1

c s c x = 1 s i n x {\color{Red} {\Large csc x=\frac{1}{sinx}}} cscx=sinx1

∫ x k   d x = 1 k + 1 x k + 1 + C , k ≠ − 1 \int x^{k} \mathrm{~d} x=\frac{1}{k+1} x^{k+1}+C, k \neq-1 xk dx=k+11xk+1+C,k=1 x k d x = d ( 1 k + 1 x k + 1 ) x^{k} d x=d\left(\frac{1}{k+1} x^{k+1}\right) xkdx=d(k+11xk+1)
∫ 1 x 2   d x = − 1 x + C \int \frac{1}{x^{2}} \mathrm{~d} x=-\frac{1}{x}+C x21 dx=x1+C 1 x 2 d x = d ( − 1 x ) \frac{1}{x^{2}} d x=d\left(-\frac{1}{x}\right) x21dx=d(x1)
∫ 1 x   d x = 2 x + C \int \frac{1}{\sqrt{x}} \mathrm{~d} x=2 \sqrt{x}+C x 1 dx=2x +C 1 x d x = d ( 2 x ) \frac{1}{\sqrt{x}} d x=d(2 \sqrt{x}) x 1dx=d(2x )
∫ 1 x   d x = ln ⁡ ∣ x ∣ + C \int \frac{1}{x} \mathrm{~d} x=\ln \vert x \vert+C x1 dx=lnx+C 1 x d x = d ( ln ⁡ ∣ x ∣ ) \frac{1}{x} d x=d (\ln \vert x \vert) x1dx=d(lnx)
∫ e x   d x = e x + C \int \mathrm{e}^{x} \mathrm{~d} x=\mathrm{e}^{x}+C ex dx=ex+C e x d x = d ( e x ) e^{x} d x=d\left(e^{x}\right) exdx=d(ex)
∫ a x   d x = a x ln ⁡ a + C , a > 0  且  a ≠ 1 \int a^{x} \mathrm{~d} x=\frac{a^{x}}{\ln a}+C, a>0 \text { 且 } a \neq 1 ax dx=lnaax+C,a>0  a=1 a x   d x = d ( a x ln ⁡ a ) a^{x} \mathrm{~d} x=d(\frac{a^{x}}{\ln a}) ax dx=d(lnaax)
∫ sin ⁡ x   d x = − cos ⁡ x + C \int \sin x \mathrm{~d} x=-\cos x+C sinx dx=cosx+C sin ⁡ x d x = d ( − cos ⁡ x ) \sin x d x=d(-\cos x) sinxdx=d(cosx)
∫ cos ⁡ x   d x = sin ⁡ x + C \int \cos x \mathrm{~d} x=\sin x+C cosx dx=sinx+C
∫ tan ⁡ x   d x = − ln ⁡ ∣ c o s x ∣ + C \int \tan x \mathrm{~d} x=-\ln \vert cos x \vert+C tanx dx=lncosx+C
∫ cot ⁡ x   d x = ln ⁡ ∣ sin ⁡ x ∣ + C \int \cot x \mathrm{~d} x=\ln \vert\sin x \vert+C cotx dx=lnsinx+C
∫ d x cos ⁡ x = ∫ sec ⁡ x   d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \frac{\mathrm{d} x}{\cos x}=\int \sec x \mathrm{~d} x=\ln \vert \sec x+\tan x \vert +C cosxdx=secx dx=lnsecx+tanx+C
∫ d x sin ⁡ x = ∫ csc ⁡ x   d x = ln ⁡ ∣ c s c x − cot ⁡ x ∣ + C \int \frac{\mathrm{d} x}{\sin x}=\int \csc x \mathrm{~d} x=\ln \vert csc x-\cot x\vert+C sinxdx=cscx dx=lncscxcotx+C
∫ sec ⁡ 2 x   d x = tan ⁡ x + C \int \sec ^{2} x \mathrm{~d} x=\tan x+C sec2x dx=tanx+C sec ⁡ 2 x d x = d tan ⁡ x \sec ^{2} x d x=d \tan x sec2xdx=dtanx
∫ csc ⁡ 2 x   d x = − cot ⁡ x + C \int \csc ^{2} x \mathrm{~d} x=-\cot x+C csc2x dx=cotx+C
∫ sec ⁡ x tan ⁡ x   d x = sec ⁡ x + C \int \sec x \tan x \mathrm{~d} x=\sec x+C secxtanx dx=secx+C
∫ csc ⁡ x cot ⁡ x   d x = − csc ⁡ x + C \int \csc x \cot x \mathrm{~d} x=-\csc x+C cscxcotx dx=cscx+C
∫ 1 1 + x 2   d x = arctan ⁡ x + C \int \frac{1}{1+x^{2}} \mathrm{~d} x=\arctan x+C 1+x21 dx=arctanx+C
∫ 1 a 2 + x 2   d x = 1 a arctan ⁡ x a + C ( a > 0 ) \int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x=\frac{1}{a} \arctan \frac{x}{a}+C(a>0) a2+x21 dx=a1arctanax+C(a>0)
∫ 1 1 − x 2   d x = arcsin ⁡ x + C \int \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=\arcsin x+C 1x2 1 dx=arcsinx+C
∫ 1 a 2 − x 2   d x = arcsin ⁡ x a + C ( a > 0 ) \int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x=\arcsin \frac{x}{a}+C(a>0) a2x2 1 dx=arcsinax+C(a>0)
∫ 1 x 2 + a 2   d x = ln ⁡ ( x + x 2 + a 2 ) + C (  常见  a = 1 ) \int \frac{1}{\sqrt{x^{2}+a^{2}}} \mathrm{~d} x=\ln \left(x+\sqrt{x^{2}+a^{2}}\right)+C(\text { 常见 } a=1) x2+a2 1 dx=ln(x+x2+a2 )+C( 常见 a=1)
∫ 1 x 2 − a 2   d x = ln ⁡ ∣ x + x 2 − a 2 ∣ + C ( ∣ x ∣ > ∣ a ∣ ) \int \frac{1}{\sqrt{x^{2}-a^{2}}} \mathrm{~d} x=\ln \left \vert x+\sqrt{x^{2}-a^{2}}\right \vert +C(\vert x \vert > \vert a \vert) x2a2 1 dx=ln x+x2a2 +C(x>a)
∫ 1 x 2 − a 2   d x = 1 2 a ln ⁡ ∣ x − a x + a ∣ + C ( ∫ 1 a 2 − x 2   d x = 1 2 a ln ⁡ ∣ x + a x − a ∣ + C ) \int \frac{1}{x^{2}-a^{2}} \mathrm{~d} x=\frac{1}{2 a} \ln \left \vert \frac{x-a}{x+a}\right \vert +C\left(\int \frac{1}{a^{2}-x^{2}} \mathrm{~d} x=\frac{1}{2 a} \ln \left \vert \frac{x+a}{x-a}\right \vert +C\right) x2a21 dx=2a1ln x+axa +C(a2x21 dx=2a1ln xax+a +C)
∫ a 2 − x 2   d x = a 2 2 arcsin ⁡ x a + x 2 a 2 − x 2 + C ( a > ∣ x ∣ ⩾ 0 ) \int \sqrt{a^{2}-x^{2}} \mathrm{~d} x=\frac{a^{2}}{2} \arcsin \frac{x}{a}+\frac{x}{2} \sqrt{a^{2}-x^{2}}+C(a> \vert x \vert\geqslant 0) a2x2  dx=2a2arcsinax+2xa2x2 +C(a>x0)
∫ sin ⁡ 2 x   d x = x 2 − sin ⁡ 2 x 4 + C ( sin ⁡ 2 x = 1 − cos ⁡ 2 x 2 ) \int \sin ^{2} x \mathrm{~d} x=\frac{x}{2}-\frac{\sin 2 x}{4}+C\left(\sin ^{2} x=\frac{1-\cos 2 x}{2}\right) sin2x dx=2x4sin2x+C(sin2x=21cos2x)
∫ cos ⁡ 2 x   d x = x 2 + sin ⁡ 2 x 4 + C ( cos ⁡ 2 x = 1 + cos ⁡ 2 x 2 ) \int \cos ^{2} x \mathrm{~d} x=\frac{x}{2}+\frac{\sin 2 x}{4}+C\left(\cos ^{2} x=\frac{1+\cos 2 x}{2}\right) cos2x dx=2x+4sin2x+C(cos2x=21+cos2x)
∫ tan ⁡ 2 x   d x = tan ⁡ x − x + C ( tan ⁡ 2 x = sec ⁡ 2 x − 1 ) \int \tan ^{2} x \mathrm{~d} x=\tan x-x+C\left(\tan ^{2} x=\sec ^{2} x-1\right) tan2x dx=tanxx+C(tan2x=sec2x1)
∫ cot ⁡ 2 x   d x = − cot ⁡ x − x + C ( cot ⁡ 2 x = csc ⁡ 2 x − 1 ) \int \cot ^{2} x \mathrm{~d} x=-\cot x-x+C\left(\cot ^{2} x=\csc ^{2} x-1\right) cot2x dx=cotxx+C(cot2x=csc2x1)

凑微分法

在这里插入图片描述

例题

换元法

∫ f ( x ) d x = x = g ( u ) ∫ f [ g ( u ) ] d [ g ( u ) ] = ∫ f [ g ( u ) ] g ′ ( u ) d u \int f(x) \mathrm{d} x \stackrel{x=g(u)}{=} \int f[g(u)] \mathrm{d}[g(u)]=\int f[g(u)] g^{\prime}(u) \mathrm{d} u f(x)dx=x=g(u)f[g(u)]d[g(u)]=f[g(u)]g(u)du

换元后容易积分,则换元成功

  • x = g ( u ) x=g(u) x=g(u)必须是单调可导函数
  • 最后再带回去

三角函数代换

在这里插入图片描述

例子

在这里插入图片描述

根式代换

在这里插入图片描述

倒代换

分母比分子高两次幂

x = 1 t x=\frac{1}{t} x=t1

复杂函数

反三角、对数、幂函数、指数、三角函数与 P n ( x )  或  e a x P_{n}(x) \text { 或 } \mathrm{e}^{a x} Pn(x)  eax相乘

反对幂指三与多项式或 e a x \mathrm{e}^{a x} eax相乘

使用分部积分法

其余使用直接代换

2 ∗ = t \sqrt{2} \sqrt{*}=t 2 =t

分部积分法

∫ u   d v = u v − ∫ v   d u {\Large \int u \mathrm{~d} v=uv-\int v \mathrm{~d} u} u dv=uvv du

u u u通常为容易求导的

在这里插入图片描述

Pro版

在这里插入图片描述

有理函数积分法

 形如  ∫ P n ( x ) Q m ( x ) d x ( n < m )  的积分称为有理函数的积分  \text { 形如 } \int \frac{P_{n}(x)}{Q_{m}(x)} \mathrm{d} x(n<m) \text { 的积分称为有理函数的积分 }  形如 Qm(x)Pn(x)dx(n<m) 的积分称为有理函数的积分 分母必须在实数域内
先因式分解,再拆分

  •  分母的一次单因式  a x + b  产生一项  A a x + b ;  \text { 分母的一次单因式 } a x+b \text { 产生一项 } \frac{A}{a x+b} \text {; }  分母的一次单因式 ax+b 产生一项 ax+bA
  •  分母的 k  重一次因式  ( a x + b ) k  产生  k  项  A 1 a x + b + A 2 ( a x + b ) 2 + ⋯ + A k ( a x + b ) k \text{ 分母的} k \text { 重一次因式 }(a x+b)^{k} \text { 产生 } k \text { 项 } \frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+\frac{A_{k}}{(a x+b)^{k}}  分母的k 重一次因式 (ax+b)k 产生 k  ax+bA1+(ax+b)2A2++(ax+b)kAk
  •  分母的二次单因式  p x 2 + q x + r  产生一项  A x + B p x 2 + q x + r \text { 分母的二次单因式 } p x^{2}+q x+r \text { 产生一项 } \frac{A x+B}{p x^{2}+q x+r}  分母的二次单因式 px2+qx+r 产生一项 px2+qx+rAx+B
  • 分母的 k 重二次因式 ( p x 2 + q x + r ) k 产生 k 项 A 1 x + B 1 p x 2 + q x + r + A 2 x + B 2 ( p x 2 + q x + r ) 2 + ⋯ + A k x + B k ( p x 2 + q x + r ) k \text{分母的} k \text{重二次因式} \left(p x^{2}+q x+r\right)^{k} 产生 k 项\frac{A_{1} x+B_{1}}{p x^{2}+q x+r}+\frac{A_{2} x+B_{2}}{\left(p x^{2}+q x+r\right)^{2}}+\cdots+\frac{A_{k} x+B_{k}}{\left(p x^{2}+q x+r\right)^{k}} 分母的k重二次因式(px2+qx+r)k产生kpx2+qx+rA1x+B1+(px2+qx+r)2A2x+B2++(px2+qx+r)kAkx+Bk

例题

求参数时优先特殊值代入
在这里插入图片描述

定积分计算

牛莱公式

一般适用于连续函数
∫ a b f ( x ) d x = F ′ ( x ) = f ( x ) F ( x ) ∣ a b = F ( b ) − F ( a ) \left.\int_{a}^{b} f(x) \mathrm{d} x \stackrel{F^{\prime}(x)=f(x)}{=} F(x)\right|_{a} ^{b}=F(b)-F(a) abf(x)dx=F(x)=f(x)F(x) ab=F(b)F(a)

对于振荡间断点也适用
在这里插入图片描述

变限积分计算

换元法

要三换
被积函数,积分变量,上下限
在这里插入图片描述

分部积分法

∫ a b u v ′ d x = u v ∣ a b − ∫ a b v u ′ d x {\large \int_{a}^{b} u v^{\prime} \mathrm{d} x=\left.u v\right|_{a} ^{b}-\int_{a}^{b} v u^{\prime} \mathrm{d} x} abuvdx=uvababvudx
找易求导
在这里插入图片描述

反常积分计算

在收敛条件下,反常积分与定积分通过换元有可能实现转换

微积分考点解析

在这里插入图片描述

在这里插入图片描述在这里插入图片描述

偶倍奇零

在这里插入图片描述

区间再现公式

∫ a b f ( x ) d x = ∫ a b f ( a + b − x ) d x \int_{a}^{b} f(x) \mathrm{d} x=\int_{a}^{b} f(a+b-x) \mathrm{d} x abf(x)dx=abf(a+bx)dx

证明

x = a + b − t x=a+b-t x=a+bt代入即可

使用

在这里插入图片描述

华里士公式

证明

由分部积分法求出的递推公式可证
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值