sklearn scikit-learn k-means 聚类算法 一维数组聚类 python 二维数组聚类

这篇博客介绍了如何利用Python的sklearn库进行一维和二维数组的数据聚类。首先通过pip安装sklearn库,然后使用KMeans进行聚类,设置聚类数量和最大迭代次数。在示例中,分别对一维和二维随机数组进行了聚类,并打印了聚类中心和每个样本的类别归属。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

安装:

pip install sklearn

一维数组聚类:

from sklearn.cluster import KMeans
import numpy as np
x = np.random.random(1000).reshape(-1,1)
km = KMeans(n_clusters=5,max_iter=1000).fit(x)
print(km.cluster_centers_)

y = KMeans(n_clusters=5,max_iter=1000).fit_predict(x) #会得出每个sample属于哪一类
print(y)

二维数组聚类:

from sklearn.cluster import KMeans
import numpy as np
x = np.random.random(1000).reshape(-1,2)
km = KMeans(n_clusters=5,max_iter=1000).fit(x)
print(km.cluster_centers_)

y = KMeans(n_clusters=5,max_iter=1000).fit_predict(x)#会得出每个sample属于哪一类
print(y)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值