计算机中的数学---矩阵及其运算

线性方程组和矩阵

线性方程组

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . a m 1 x 1 + a m 2 x 2 + . . . + a m n x n = b m \begin{alignedat}{4} a_{11}&x_{1}+ &a_{12}&x_{2} + ... + &a_{1n}x_{n} = &b_{1} \\ a_{21}&x_{1}+&a_{22}&x_{2} + ... + &a_{2n}x_{n} = &b_{2} \\ ... \\ a_{m1}&x_{1}+&a_{m2}&x_{2}+...+&a_{mn}x_{n}=&b_{m} \end{alignedat} a11a21...am1x1+x1+x1+a12a22am2x2+...+x2+...+x2+...+a1nxn=a2nxn=amnxn=b1b2bm
常数项 b 1 , b 2 , . . . , b m b_{1},b_{2},...,b_{m} b1,b2,...,bm不全为0时,称为 n元非齐次线性方程组,
全为0时,称为 n元齐次线性方程组。

对线性方程组需讨论,
1.是否有解?
2.有解时,解是否唯一?
3.多个解时,如何求其所有解?

矩阵的定义

由m*n个数 a i j a_{ij} aij排成的m行n列的数表
A = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . . . . . . . a m 1 a m 2 . . . a m n ) A = \begin{pmatrix} a_{11} & a_{12} &... &a_{1n} \\ a_{21} &a_{22} &... &a_{2n} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ a_{m1} & a_{m2} &... &a_{mn} \end{pmatrix} A=a11a21...am1a12a22...am2..................a1na2n...amn
称为 m ∗ n m*n mn矩阵。行数列数均为n的矩阵称为n阶矩阵或n阶方阵。
只有一行矩阵,又称为行矩阵,行向量
只有一列矩阵,又称为列矩阵,列向量

两个矩阵行数相等,列数相等,称为同型矩阵。
同型矩阵且对应元素相等,则称矩阵A等于矩阵B,记作 A = B A=B A=B
对左上角到右下角以外元素都是0的n阶方阵,称为对角阵,记作 Λ = d i a g ( x 1 , x 2 , . . . , x n ) \varLambda = diag(x_{1}, x_{2}, ... , x_{n}) Λ=diag(x1,x2,...,xn)
x 1 , x 2 , . . . , x n x_{1}, x_{2}, ... , x_{n} x1,x2,...,xn均为1时,叫n阶单位矩阵,称为 E E E

矩阵是用来研究线性变换的工具

矩阵的运算

1.定义 设有两个 m ∗ n m*n mn矩阵A,B,则矩阵A,B的和记作A+B。
规定为:
A + B = ( a 11 + b 11 a 12 + b 12 . . . a 1 n + b 1 n a 21 + b 21 a 22 + b 22 . . . a 2 n + b 2 n . . . . . . . . . . . . . . . . . . a m 1 + b m 1 a m 2 + b m 2 . . . a m n + b m n ) A +B= \begin{pmatrix} a_{11}+b_{11} & a_{12}+b_{12} &... &a_{1n}+b_{1n} \\ a_{21}+b_{21} &a_{22}+b_{22} &... &a_{2n}+b_{2n} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ a_{m1}+b_{m1} & a_{m2}+b_{m2} &... &a_{mn}+b_{mn} \end{pmatrix} A+B=a11+b11a21+b21...am1+bm1a12+b12a22+b22...am2+bm2..................a1n+b1na2n+b2n...amn+bmn

推论
A + B = B + A A+B=B+A A+B=B+A
( A + B ) + C = A + ( B + C ) (A+B)+C=A+(B+C) (A+B)+C=A+(B+C)

设矩阵 A = ( a i j ) A=(a_{ij}) A=(aij),记 − A = ( − a i j ) -A=(-a_{ij}) A=(aij)
− A -A A称为矩阵 A A A的负矩阵,有 A + ( − A ) = O A+(-A)=O A+(A)=O
规定矩阵减法为 A − B = A + ( − B ) A-B=A+(-B) AB=A+(B)

数与矩阵相乘

1.定义 k k k与矩阵A的乘积记作 k A kA kA A k Ak Ak,规定为
A = ( k a 11 k a 12 . . . k a 1 n k a 21 k a 22 . . . k a 2 n . . . . . . . . . . . . . . . . . . k a m 1 k a m 2 . . . k a m n ) A= \begin{pmatrix} ka_{11} & ka_{12} &... &ka_{1n} \\ ka_{21} &ka_{22} &... &ka_{2n} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ ka_{m1} & ka_{m2} &... &ka_{mn} \end{pmatrix} A=ka11ka21...kam1ka12ka22...kam2..................ka1nka2n...kamn

推论
( k 1 k 2 ) A = k 1 ( k 2 A ) (k_{1}k_{2})A = k_{1}(k_{2}A) (k1k2)A=k1(k2A)
( k 1 + k 2 ) A = k 1 A + k 2 A (k_{1}+k_{2})A=k_{1}A+k_{2}A (k1+k2)A=k1A+k2A
k 1 ( A + B ) = k 1 A + k 1 B k_{1}(A+B)=k_{1}A+k_{1}B k1(A+B)=k1A+k1B

矩阵与矩阵相乘

1.定义 A = ( a i j ) A=(a_{ij}) A=(aij)是一个 m ∗ s m*s ms矩阵, B = ( b i j ) B=(b_{ij}) B=(bij)是一个 s ∗ n s*n sn矩阵,则规定矩阵 A A A与矩阵 B B B的乘积是一个 m ∗ n m*n mn矩阵 C = ( c i j ) C=(c_{ij}) C=(cij),其中
c i j = ∑ k = 1 s a i k b k j c_{ij}=\displaystyle\sum_{k=1}^s a_{ik}b_{kj} cij=k=1saikbkj

推论
( A B ) C = A ( B C ) (AB)C=A(BC) (AB)C=A(BC)
k 1 ( A B ) = ( k 1 A ) B = A ( k 1 B ) k_{1}(AB)=(k_{1}A)B=A(k_{1}B) k1(AB)=(k1A)B=A(k1B)
A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC
( B + C ) A = B A + C A (B+C)A=BA+CA (B+C)A=BA+CA
对单位矩阵 E E E,易验证
E m A m ∗ n = A m ∗ n E_{m}A_{m*n}=A_{m*n} EmAmn=Amn
A m ∗ n E n = A m ∗ n A_{m*n}E_{n}=A_{m*n} AmnEn=Amn
A k = A . . . A A^k=A...A Ak=A...A k k k A A A相乘

矩阵的转置

1.定义 把矩阵 A A A的行换成同序数的列得到一个新矩阵,叫做A的转置矩阵,记作 A T A^T AT

推论:【假设以下运算皆可行】
( A T ) T = A (A^T)^T=A (AT)T=A
( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
( k 1 A ) T = k 1 A T (k_{1}A)^T=k_{1}A^T (k1A)T=k1AT
( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT

方阵的行列式

1.定义 由n阶方阵 A A A的元素所构成的行列式(各元素的位置不变),称为方阵 A A A的行列式,记作 ∣ A ∣ |A| A
A , B A,B A,B n n n阶方阵, k k k为数,则有
∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
∣ k A ∣ = k n ∣ A ∣ |kA|=k^n|A| kA=knA
∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=AB 没有实际去证明的性质

2.定义 行列式 ∣ A ∣ |A| A的各个元素的代数余子式 A i j A_{ij} Aij所构成的如下的矩阵 A ∗ = ( A 11 A 21 . . . A n 1 A 12 A 22 . . . A n 2 . . . . . . . . . . . . . . . . . . A 1 n A 2 n . . . A n n ) A^*= \begin{pmatrix} A_{11} & A_{21} &... &A_{n1} \\ A_{12} &A_{22} &... &A_{n2} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ A_{1n} & A_{2n} &... &A_{nn} \end{pmatrix} A=A11A12...A1nA21A22...A2n..................An1An2...Ann
称为矩阵 A A A的伴随矩阵,且有 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

逆矩阵

1.定义 对于n阶矩阵 A A A,如有一个n阶矩阵 B B B,使 A B = B A = E AB=BA=E AB=BA=E,则说矩阵 A A A是可逆的,并把矩阵 B B B称为 A A A的逆矩阵。

性质
逆矩阵,若存在,则唯一。A的逆矩阵,记作 A − 1 A^{-1} A1,有 A A − 1 = A − 1 A = E AA^{-1}=A^{-1}A=E AA1=A1A=E
若矩阵 A A A可逆,则 ∣ A ∣ ! = 0 |A|!=0 A!=0
∣ A ∣ ! = 0 |A|!=0 A!=0,则矩阵A可逆,且 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}={\cfrac{1}{|A|}}A^* A1=A1A

推论
A A A是可逆矩阵充分必要条件为 ∣ A ∣ ! = 0 |A|!=0 A!=0
A B = E AB=E AB=E B A = E BA=E BA=E,则 B = A − 1 B=A^{-1} B=A1
A A A可逆,则 A − 1 A^{-1} A1也可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
A A A可逆,数 k ! = 0 k!=0 k!=0,则 k A kA kA可逆,且 ( k A ) − 1 = 1 k A − 1 (kA)^{-1}={\cfrac{1}{k}}A^{-1} (kA)1=k1A1
A , B A,B AB为同阶矩阵且均可逆,则 A B AB AB也可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1

2.定义 Φ ( x ) = a 0 + a 1 x + . . . + a m x m \Phi(x)=a_{0}+a_{1}x+...+a_{m}x^{m} Φ(x)=a0+a1x+...+amxm x x x m m m次多项式, A A A为n阶矩阵,记 Φ ( A ) = a 0 E + a 1 A + . . . + a m A m \Phi(A)=a_{0}E+a_{1}A+...+a_{m}A^{m} Φ(A)=a0E+a1A+...+amAm Φ ( A ) \Phi(A) Φ(A)称为矩阵 A A A m m m次多项式。

克拉默法则

a 11 x 1 + a 12 x 2 + . . . + a 1 n x n = b 1 a 21 x 1 + a 22 x 2 + . . . + a 2 n x n = b 2 . . . a n 1 x 1 + a n 2 x 2 + . . . + a n n x n = b n \begin{alignedat}{4} a_{11}&x_{1}+ &a_{12}&x_{2} + ... + &a_{1n}x_{n} = &b_{1} \\ a_{21}&x_{1}+&a_{22}&x_{2} + ... + &a_{2n}x_{n} = &b_{2} \\ ... \\ a_{n1}&x_{1}+&a_{n2}&x_{2}+...+&a_{nn}x_{n}=&b_{n} \end{alignedat} a11a21...an1x1+x1+x1+a12a22an2x2+...+x2+...+x2+...+a1nxn=a2nxn=annxn=b1b2bn
A = ( a 11 a 12 . . . a 1 n a 21 a 22 . . . a 2 n . . . . . . . . . . . . . . . . . . a n 1 a n 2 . . . a n n ) , ∣ A ∣ ! = 0 A = \begin{pmatrix} a_{11} & a_{12} &... &a_{1n} \\ a_{21} &a_{22} &... &a_{2n} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ a_{n1} & a_{n2} &... &a_{nn} \end{pmatrix},|A|!=0 A=a11a21...an1a12a22...an2..................a1na2n...ann,A!=0,则方程组有唯一解
x 1 = ∣ A 1 ∣ ∣ A ∣ , x 2 = ∣ A 2 ∣ ∣ A ∣ , . . . , x n = ∣ A n ∣ ∣ A ∣ x_{1}={\cfrac{|A_{1}|}{|A|}},x_{2}={\cfrac{|A_{2}|}{|A|}},...,x_{n}={\cfrac{|A_{n}|}{|A|}} x1=AA1,x2=AA2,...,xn=AAn
其中 A j A_{j} Aj是把系数矩阵 A A A中第 j j j列的元素用方程组右端常数项代替后得到的 n n n阶矩阵

矩阵分块法

性质
1.设矩阵 A A A B B B的行数相同,列数相同,采用相同的分块法,有: A = ( A 11 A 12 . . . A 1 r A 21 A 22 . . . A 2 r . . . . . . . . . . . . . . . . . . A s 1 A s 2 . . . A s r ) A= \begin{pmatrix} A_{11} & A_{12} &... &A_{1r} \\ A_{21} &A_{22} &... &A_{2r} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ A_{s1} & A_{s2} &... &A_{sr} \end{pmatrix} A=A11A21...As1A12A22...As2..................A1rA2r...Asr
B = ( B 11 B 12 . . . B 1 r B 21 B 22 . . . B 2 r . . . . . . . . . . . . . . . . . . B s 1 B s 2 . . . B s r ) B= \begin{pmatrix} B_{11} & B_{12} &... &B_{1r} \\ B_{21} &B_{22} &... &B_{2r} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ B_{s1} & B_{s2} &... &B_{sr} \end{pmatrix} B=B11B21...Bs1B12B22...Bs2..................B1rB2r...Bsr
其中 A i j A_{ij} Aij B i j B_{ij} Bij行数相同,列数相同,那么
A + B = ( A 11 + B 11 A 12 + B 12 . . . A 1 r + B 1 r A 21 + B 21 A 22 + B 22 . . . A 2 r + B 2 r . . . . . . . . . . . . . . . . . . A s 1 + B s 1 A s 2 + B s 2 . . . A s r + B s r ) A+B= \begin{pmatrix} A_{11}+B_{11} & A_{12}+B_{12} &... &A_{1r}+B_{1r} \\ A_{21}+B_{21} &A_{22}+B_{22} &... &A_{2r}+B_{2r} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ A_{s1}+B_{s1} & A_{s2}+B_{s2} &... &A_{sr}+B_{sr} \end{pmatrix} A+B=A11+B11A21+B21...As1+Bs1A12+B12A22+B22...As2+Bs2..................A1r+B1rA2r+B2r...Asr+Bsr
2.设 A = ( A 11 A 12 . . . A 1 r A 21 A 22 . . . A 2 r . . . . . . . . . . . . . . . . . . A s 1 A s 2 . . . A s r ) A= \begin{pmatrix} A_{11} & A_{12} &... &A_{1r} \\ A_{21} &A_{22} &... &A_{2r} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ A_{s1} & A_{s2} &... &A_{sr} \end{pmatrix} A=A11A21...As1A12A22...As2..................A1rA2r...Asr k k k为数,则 k A = ( k A 11 k A 12 . . . k A 1 r k A 21 k A 22 . . . k A 2 r . . . . . . . . . . . . . . . . . . k A s 1 k A s 2 . . . k A s r ) kA= \begin{pmatrix} kA_{11} & kA_{12} &... &kA_{1r} \\ kA_{21} &kA_{22} &... &kA_{2r} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ kA_{s1} & kA_{s2} &... &kA_{sr} \end{pmatrix} kA=kA11kA21...kAs1kA12kA22...kAs2..................kA1rkA2r...kAsr
3.设 A A A m ∗ l m*l ml矩阵, B B B l ∗ n l*n ln矩阵,分块成
A = ( A 11 A 12 . . . A 1 t A 21 A 22 . . . A 2 t . . . . . . . . . . . . . . . . . . A s 1 A s 2 . . . A s t ) A= \begin{pmatrix} A_{11} & A_{12} &... &A_{1t} \\ A_{21} &A_{22} &... &A_{2t} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ A_{s1} & A_{s2} &... &A_{st} \end{pmatrix} A=A11A21...As1A12A22...As2..................A1tA2t...Ast
B = ( B 11 B 12 . . . B 1 r B 21 B 22 . . . B 2 r . . . . . . . . . . . . . . . . . . B t 1 B t 2 . . . B t r ) B= \begin{pmatrix} B_{11} & B_{12} &... &B_{1r} \\ B_{21} &B_{22} &... &B_{2r} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ B_{t1} & B_{t2} &... &B_{tr} \end{pmatrix} B=B11B21...Bt1B12B22...Bt2..................B1rB2r...Btr
其中 A i 1 , A i 2 , . . . , A i t A_{i1},A_{i2},...,A_{it} Ai1,Ai2,...,Ait的列数分别等于 B 1 j , B 2 j , . . . , B t j B_{1j},B_{2j},...,B_{tj} B1j,B2j,...,Btj的行数,则
A B = ( C 11 C 12 . . . C 1 r C 21 C 22 . . . C 2 r . . . . . . . . . . . . . . . . . . C s 1 C s 2 . . . C s r ) AB= \begin{pmatrix} C_{11} & C_{12} &... &C_{1r} \\ C_{21} &C_{22} &... &C_{2r} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ C_{s1} & C_{s2} &... &C_{sr} \end{pmatrix} AB=C11C21...Cs1C12C22...Cs2..................C1rC2r...Csr
其中 C i j = ∑ k = 1 t A i k B k j , i = 1 , 2 , . . . , s ; j = 1 , 2 , . . . , r C_{ij}=\displaystyle\sum_{k=1}^tA_{ik}B_{kj},i=1,2,...,s;j=1,2,...,r Cij=k=1tAikBkj,i=1,2,...,s;j=1,2,...,r
4.设
A = ( A 11 A 12 . . . A 1 r A 21 A 22 . . . A 2 r . . . . . . . . . . . . . . . . . . A s 1 A s 2 . . . A s r ) A= \begin{pmatrix} A_{11} & A_{12} &... &A_{1r} \\ A_{21} &A_{22} &... &A_{2r} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ A_{s1} & A_{s2} &... &A_{sr} \end{pmatrix} A=A11A21...As1A12A22...As2..................A1rA2r...Asr,则 A T = ( A 11 T A 21 T . . . A s 1 T A 12 T A 22 T . . . A s 2 T . . . . . . . . . . . . . . . . . . A 1 r T A 2 r T . . . A s r T ) A^{T}= \begin{pmatrix} A_{11}^{T} & A_{21}^{T} &... &A_{s1}^{T} \\ A_{12}^T &A_{22}^{T} &... &A_{s2}^{T} \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ A_{1r}^T & A_{2r}^{T} &... &A_{sr}^{T} \end{pmatrix} AT=A11TA12T...A1rTA21TA22T...A2rT..................As1TAs2T...AsrT
5.设A为n阶方阵,若A的分块矩阵只在对角线有非0子块,其余子块都为0矩阵,且在对角线的子块都是方阵,即 A = ( A 1 0 . . . 0 0 A 2 . . . 0 . . . . . . . . . . . . . . . . . . 0 0 . . . A s ) A= \begin{pmatrix} A_{1} & 0 &... &0 \\ 0 &A_{2} &... &0 \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ 0 & 0 &... &A_{s} \end{pmatrix} A=A10...00A2...0..................00...As,则称A为分块对角矩阵。
∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ . . . ∣ A s ∣ |A|=|A_{1}||A_{2}|...|A_{s}| A=A1A2...As
∣ A i ∣ ! = 0 |A_{i}|!=0 Ai!=0,有 A − 1 = ( A 1 − 1 0 . . . 0 0 A 2 − 1 . . . 0 . . . . . . . . . . . . . . . . . . 0 0 . . . A s − 1 ) A^{-1}= \begin{pmatrix} A_{1}^{-1} & 0 &... &0 \\ 0 &A_{2}^{-1} &... &0 \\ . &. &... &.\\ . &. &... &.\\ . &. &... &.\\ 0 & 0 &... &A_{s}^{-1} \end{pmatrix} A1=A110...00A21...0..................00...As1

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

raindayinrain

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值