VR+强化学习 格斗游戏相关文献资料

整体思路:

自训练AI  -> 玩家键盘接入交互 -> 搭虚拟环境 -> 体感交互(Kinect) -> VR设备+体感交互

对手Agent模块设计:

这块主要用强化学习来做

存在的问题:AI强度设置(已有相关论文研究AI强度适宜问题) 【见另一个文档】

主要需要关心:玩家的舒适/满意度

 

FightingICE

 

核心思想:设置一个Balancing Constant(平衡常数)值,在格斗游戏中,这个值往往设置成双方生命量的差异。

观测参数设置:

物理空间:Agent和玩家之间的距离

平衡常数:Agent的生命量与玩家的生命量之间的差值以及Agent所获得的奖励类型(切分成三种Reward,在BC之内、高于和低于BC)

与动作有关的信息:Agent和玩家的最后一个动作,以及一个离散值,该值告诉我们玩家从最后一次观测起是否改变了动作

所有这些值都在-11之间进行了归一化提升性能。

Action:训练时利用自训练,两个Agent都可以移动(目前设想是前后左右四个方法),躲避(蹲、跳)和攻击(踢,拳击)。

 

存在的问题点:

AI决策刷新时间,其他论文研究,类似的格斗游戏最佳更新决策时间为9秒。(仅供参考)

玩家难易度:据相关研究,最佳难度区间控制在玩家的胜率平均在50%(实验结果Agent胜率略低于50%时,玩家反馈最佳)

思考(目前没找到理论支撑):有一个会影响全局的决策更佳。

玩家交互方法:

VR格斗游戏背景意义:

体感交互(姿态识别):

常规方法:

  • Kinect,

优势:资源占用,性能开销低,姿态定

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值