整体思路:
自训练AI -> 玩家键盘接入交互 -> 搭虚拟环境 -> 体感交互(Kinect) -> VR设备+体感交互
对手Agent模块设计:
这块主要用强化学习来做
存在的问题:AI强度设置(已有相关论文研究AI强度适宜问题) 【见另一个文档】
主要需要关心:玩家的舒适/满意度
FightingICE
核心思想:设置一个Balancing Constant(平衡常数)值,在格斗游戏中,这个值往往设置成双方生命量的差异。
观测参数设置:
物理空间:Agent和玩家之间的距离
平衡常数:Agent的生命量与玩家的生命量之间的差值以及Agent所获得的奖励类型(切分成三种Reward,在BC之内、高于和低于BC)
与动作有关的信息:Agent和玩家的最后一个动作,以及一个离散值,该值告诉我们玩家从最后一次观测起是否改变了动作
所有这些值都在-1和1之间进行了归一化提升性能。
Action:训练时利用自训练,两个Agent都可以移动(目前设想是前后左右四个方法),躲避(蹲、跳)和攻击(踢,拳击)。
存在的问题点:
AI决策刷新时间,其他论文研究,类似的格斗游戏最佳更新决策时间为9秒。(仅供参考)
玩家难易度:据相关研究,最佳难度区间控制在玩家的胜率平均在50%(实验结果Agent胜率略低于50%时,玩家反馈最佳)
思考(目前没找到理论支撑):有一个会影响全局的决策更佳。
玩家交互方法:
VR格斗游戏背景意义:
体感交互(姿态识别):
常规方法:
- Kinect,
优势:资源占用,性能开销低,姿态定