【Week12作业 E】选做题-2【状压dp】

题意:

马上假期就要结束了,zjm还有 n 个作业,完成某个作业需要一定的时间,而且每个作业有一个截止时间,若超过截止时间,一天就要扣一分。
zjm想知道如何安排做作业,使得扣的分数最少。
Tips: 如果开始做某个作业,就必须把这个作业做完了,才能做下一个作业。

有多组测试数据。第一行一个整数表示测试数据的组数
第一行一个整数 n(1<=n<=15)
接下来n行,每行一个字符串(长度不超过100) S 表示任务的名称和两个整数 D 和 C,分别表示任务的截止时间和完成任务需要的天数。
这 n 个任务是按照字符串的字典序从小到大给出。

每组测试数据,输出最少扣的分数,并输出完成作业的方案,如果有多个方案,输出字典序最小的一个。


思路:

n较小,但状态复杂,考虑使用状态压缩。
状态S:查询S中是否有编号为i的点:S&(1<<i);在状态中添加编号为i的点:S=S | (1<<i);在状态S中删除编号为i的点:S=S ^ (1<<i)。
令f[S]表示完成S作业集合后被扣的最少分数。c[x]是作业x完成所需时间,d[x]是作业x的ddl,sum[S]是作业集合S对应的总时间,tmp=max(sum[S]+c[x]-d[x],0)是作业x被扣的分数。
转移方程:f[S | (1<<x)]=f[S] + tmp。
也就是说,从所有作业都不选的状态S=0遍历至所有都选的状态S=(1<<n)-1,从该作业集合S基础上添加一个没有完成的作业x,并更新新作业集合S‘的扣分f[S’]、总时间sum[S’]以及pre[S’]。其中pre数组是该状态S对应的最后一个作业,用于回溯输出。
最少扣的分数就是f[S]。
最后递归输出完成作业的顺序,从最终状态S=(1<<n)-1开始递归,每一次S的最后完成的作业为pre[S],将其从S中删除,然后再进行递归,直到S=0为止。


总结:

一道状压dp问题,很好的考察了位运算、状态压缩以及dp的思想。以前的dp都是遍历至新状态,然后根据旧状态求出新状态的各种值,而这道题是遍历至旧状态,然后添加元素得到新状态并且求出新状态的各种值。


代码:

#include <iostream>
#include <string>
#include <vector>
using namespace std;

//f[S]表示完成S作业集合后被扣的最少分数
//sum=S作业集合对应总时间
//tmp=max(sum+c[x]-d[x],0) 作业x被扣的分数
//f[S|(1<<x)]=f[S]+tmp 作业x
int n;
string str[16];
int d[16],c[16];
int f[100000];
int sum[100000];
int pre[100000]; //pre[S]表示S的最后一个作业
void output(int S)
{
	if(S==0)
		return;
	output(S^(1<<pre[S]));
	cout<<str[pre[S]]<<endl;
}
int main()
{
	int zs;
	cin>>zs;
	for(int sjzs=1; sjzs<=zs; sjzs++)
	{
		cin>>n;
		for(int i=0; i<n; i++)
			cin>>str[i]>>d[i]>>c[i];
		for(int i=0; i<100000; i++)
			f[i]=1e9,sum[i]=0,pre[i]=-1;
		f[0]=0;
		for(int S=0; S<=(1<<n)-1; S++)
		{
			for(int x=0; x<n; x++)	//0~n-1号作业
			{
				if(!(S&(1<<x)))	//没有x
				{
					int tmp=max(sum[S]+c[x]-d[x],0);
					if(f[S|(1<<x)]>f[S]+tmp)
					{
						f[S|(1<<x)]=min(f[S|(1<<x)],f[S]+tmp);
						sum[S|(1<<x)]=sum[S]+c[x];
						pre[S|(1<<x)]=x;
					}
				}
			}
		}
		int S=(1<<n)-1;
		cout<<f[S]<<endl;
		//回溯路径
		output(S);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值