TensorFlow.js是什么
- 一个用JavaScript实现的机器学习库。
- 可以直接在浏览器和Node.js中适用机器学习技术了。
通过上面两点可以知道TensorFlow.js首先是一个工具库,并不是一个产品,不能直接帮助我们创造价值,但是我们可以利用这个工具库开发出一个产品来创造价值。其实TensorFlow是利用JS实现,我么都知道Python是人工智能的主流语言,有了TensorFlow.js这意味着前端工程可以适用自己最熟悉的JavaScript语言来进行机器学习的开发。再者是TensorFlow.js可以直接在浏览器中使用,意味着可以直接浏览器中交互能力,比如:摄像头、录音等等。最后因为没有调用后端,不用考虑网络的延迟等因素,效率也会更高。
TensorFlow.js具体功能
- 运行现有模型,可以直接使用别人训练好的模型。
-
重新训练现有模型,可以在现有的模型上面做一些微调,实现自己想要的功能。
-
使用JavaScript开发机器学习模型,可以自己从零开发一个模型。
安装TensorFlow.js
下面的安装方式是安装在浏览器上面的。
利用Script标签安装
随便利用一个编译器(如:VSCode),创建一个html文件,输入下列的代码。
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script>
这就已经安装好了,写段代码测试一下。
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@2.0.0/dist/tf.min.js"></script>
<script>
const a = tf.tensor([1, 2])
a.print()
</script>
打开浏览器,在控制台看见输出结果:
利用脚本安装的缺点就是在使用编译器的时候,不会智能提示,编写体验不是很友好。
从 NPM 安装
您可以使用 npm cli 工具或 yarn 安装 TensorFlow.js。
npm install @tensorflow/tfjs
安装完之后创建一个index.html,如图:
然后再创建一个script.js文件,就会有智能提示。
写完代码要运行的时候,推荐采用parcel。
Parcel 是 Web 应用打包工具,适用于经验不同的开发者。它利用多核处理提供了极快的速度,并且不需要任何配置。
Parcel安装
npm install -g parcel-bundler
Parcel 可以使用任何类型的文件作为入口,但是最好还是使用 HTML 或 JavaScript 文件。如果在 HTML 中使用相对路径引入主要的 JavaScript 文件,Parcel 也将会对它进行处理将其替换为相对于输出文件的 URL 地址。
接下来,创建一个 index.html 和 script.js 文件。
<script src="script.js"></script>
import * as tf from '@tensorflow/tfjs';
const a = tf.tensor([1, 2]);
a.print()
执行如下代码:
点击网址,在控制台可以看见结果。