如何证明神存在

如何证明神存在

 

         基本上,对于不能接触的事物,你不能用证据证明,也不能证伪,例如神这种东西,你不可能去神的世界带来所谓的证据,你也不能用任何证据否定神的存在。但这并不表示我们就不能推导出来。爱因斯坦发现光速不变现象的时候,也要假设时间变化了,从而提出相对论。后来又假设时空弯曲,提出了广义相对论。这对于当时的人来说的确不可思议,但是只有这种假设才能解释一些现象。像黑洞一样我们不能接触,但我们同样可以推导它的存在。

         任何现象都有其内因,而内因又必引起现象。我们可以像医生一样通过表象来推断内因,也可由假证内因来推导表象,用表象反证内因。

         根据系统论,任何系统,内部元素之间必定有联系,一个与系统没有任何联系的元素,完全可以将它从系统中移除,以减少系统复杂度。我们把这个世界看成一个系统,我们讨论的神,也同样在这个系统之中,否则讨论他就没有任何意义。也就是说,神与这个世界是有联系的,在联系的时候,我们就能证明他的存在。

 

神的定义。

神是造物主,神掌管这个世界。

 

1.缸中之脑思想实验

“缸中之脑”是希拉里·普特南(Hilary Putnam)1981年在他的《理性,真理和历史》(Reason, Truth, and History)一书中,阐述的假想。这是一个著名的哲学思想实验:

        一个人(可以假设是你自己)被邪恶科学家施行了手术,他的脑被从身体上切了下来,放进一个盛有维持脑存活营养液的缸中。脑的神经末梢连接在计算机上,这台计算机按照程序向脑传送信息,以使他保持一切完全正常的幻觉。对于他来说,似乎人、物体、天空还都存在,自身的运动、身体感觉都可以输入。这个

脑还可以被输入或截取记忆(截取掉大脑手术的记忆,然后输入他可能经历的各种环境、日常生活)。他甚至可以被输入代码,感觉到他自己正在这里阅读一段有趣而荒唐的文字。

有关这个假想的最基本的问题是:你如何担保你自己不是在这种困境之中?

 

2.粉碎物质观念。

         也许上面的实验让人感觉太遥远不太实际,我们用一个类似的更加简单明了并很可能实现的实验来解释:

         神经系统由5个部分组成:感受器,传入神经,神经中枢,传出神经,效应器。正是这神经系统,人可以与世界交互。依据这一常识,我们可以将缸中之脑实验稍作修改:假设有一台机器,能够截获传入神经和传出神经的信号,然后处理截获的信号。这台机器能合乎逻辑的处理信息,构建出一个虚拟的世界,并将虚拟世界的的刺激信号传给神经中枢。这样,假设“我”处于这个虚拟的环境中,我一抬手,我能“看到”(假的虚拟信号)自己的手抬起来。这台机器是如何欺骗人我的大脑的呢?首先,我抬手从而有信号从传出神经传出,但是没有传给效应器(即手),而是被机器截获,这台机器分析信号得知我准备抬手,然后处理信号,将虚拟世界的我的手抬起,并将结果通过传入神经反馈给我们,我们以为一切都很正常,然而“真实”的我的手并没有抬起来,我们所见到的也全部都是假的虚拟之物,包括历史,文化,基本物理化学规则。但是我们的感受又是100%真实的。在这个虚拟世界可以和真实世界一样做任何事情,所有感受和在真实世界并无区别。问题来了,我是谁,哪个是真的我,我所看到的世界就是真的吗? 笛卡尔说我思故我在,我们可以怀疑一切,包括你所看到的,听到的,触摸到的,甚至过去和将来的,但是这个“我”不能怀疑,我思考了可以确定我是存在的。

 

         再来个更极端的例子,假设将一个刚出生的婴儿放到这个机器中,在这个虚拟的世界中,这个婴儿照常生活,长大,接受教育,等等等等,他怎么能区分他所处的环境是虚拟的?“你如何担保你自己不是在这种困境之中?”

 

3. 以上实验可以得出几个推论

       1.意识并不依赖物质。

马克思哲学体系的观念是,意识依赖物质,物质决定意识。这也是大多数人认识世界的观念。认为任何东西,必须有一个物质来表示。以上实验可以看出,在意识与物质实事上可以完全的分离:实验中的人所处的世界完全都是假的,没有任何真实存在的物质,任何色声香味触都是计算机模拟的电子信号,意识又由什么来依附呢?但是实验中的人以为他所处的世界是存在的,真实不虚。

       2.有什么样的基本规则,就有什么样的文明。

基本规则是这个世界固有的,人只能认同而不能解释。有什么样的规则就能产生什么样的文明。就如同我们现在这个世界,因为有了质能守恒,动量守恒这些基本规则,我们发展了机械文明。假设在虚拟世界增加一条规则:用固定的咒语以及对应的手势可以释放魔法,这个规则从来就有,没有原因,人类就同样能够发展出魔法的文明。

       3.

观自在菩萨行深般若波罗密多时,照见五蕴皆空,度一切苦厄。佛家所言,凡有所相,皆是虚妄。万事万物都是虚幻和不真实的。



3.反证神的存在。

        4个事实可以证明我们与神的联系。

1.濒死体验

         濒死体验(NDE)也就是濒临死亡的体验,指由某些遭受严重创伤或疾病但意外地获得恢复的人,以及处于潜在毁灭性境遇中预感即将死亡而又侥幸脱险的人所叙述的死亡威胁时刻的主观体验。荷兰Rijnstate医院心血管中心的沛姆。凡。拉曼尔医生(Pim VanLommel)及其同事对在1988-1992年间被成功抢救的334位26-92岁的突发性心肌梗塞患者进行了长达八年的追踪式濒死体验研究。通过严格的对比分析及统计检验,拉曼尔医生发现濒死体验发生于病人没有脑电波,心电图的死亡状态之时。

         从这些实事可以推断出,人的感受与物质的身体无关,身体已经死亡了,但是人的感受还在,意识还在。

2.记忆存储

         人的记忆可以是一个关联,如果我们生活在虚拟世界中,我们的记忆必然存储在真实世界。这也就是为什么科学家到现在依然无法从人的身体上找到记忆存储位置的原因。缘木求鱼根本不可能找到。因为只有神的存在,才有合理的解释。如果人类永远都找不到记忆存储位置,同样的反证神的存在。

3.睡觉做梦

         人为什么需要睡觉,凡动物都会睡觉。简单的生物不会睡觉,例如细菌。人为什么会睡觉至今还是个谜。各种解释都很牵强。我们大胆猜测一下,人睡觉是为了存档,仅此而已。因为存档的过程中,人是不能由活动的,否则这段活动就不会被存档了。

而又为什么会做梦呢?

  这里有一个很奇特的现象,做梦的时候,意识仍然能够接受输入,但是这个输入不是真实世界的感受,来源未知。我想肯定不是人的大脑自己创造的这些虚幻的景象来欺骗自己,合理的解释是,切换了频道,人不再从真实世界接受信号了,而是来源于某个设备的虚假信号,梦境对于人来说也没什么重大意义,可能也就像看电视一样,给你切换一个广告频道。一般在梦中人是不能区分梦境和真实的,所以有庄生梦蝶一说。庄子梦见自己变成了蝴蝶在飞,醒来以后不知道是蝴蝶梦见自己变成了庄子,还是庄子梦见自己变成了蝴蝶。

4.恐龙灭绝原因

为什么恐龙进化到那么强大“一瞬间”就从地球上消失了?

神创造世界的时候,并没有胎生动物,只有卵生,但是发现卵生动物的世界是一个弱肉强食的世界,生物不断进化得更大,更强壮,更富有攻击性。凡弱小的,无害的都被淘汰掉了。神发现这样不行,这个世界太残忍,这个游戏规则太不完美,自己都看不下去了。于是一把火全烧了,重新设计。制作了男女区别的人类祖先。于是这个世界有了爱,正义,慈悲,善良,怜悯。。。

游戏开发人员面对的一个问题就是游戏的人工智能(AI)系统。任何AI都是人预先定义的行为规则,AI角色并没有真正的AI,所谓真正的AI,即是说这个AI有自己的意识。如果人类真的创造出了这种AI,这表示人其实创造出了生命,这已经接近神的领域了。神创造了有意识的生命,再赋予这个生命躯体。所以人是永远不可能制造出与人一样聪明的AI的。所以也就不用担心某一天人类会被机器人取代。

 

以上论述完全扯蛋,如有雷同,纯属巧合。

### 回答1: 好的。 1. 两条相交直线的交点到这两条直线所在直线的距离之积相等: 这个结论可以通过三角形面积公式证明。 2. 全等三角形: 如果一个三角形的三条边长都相等,那么这个三角形就是等边三角形。这个结论可以通过比较边长来证明。 3. 三角形内角和为 180°: 如果将一个三角形折叠成一条直线,那么这条直线的角度之和就是 180°。这个结论可以通过平面角的定义来证明。 4. 奇偶性: 如果一个整数能被 2 整除,那么它就是偶数;如果一个整数不能被 2 整除,那么它就是奇数。这个结论可以通过对 2 取模运算来证明。 ### 回答2: 数学证明作为数学的重要部分,一方面用于验证数学理论的正确性,另一方面也可以带来乐趣和游戏性。下面是几个有趣的数学证明的推荐: 1. 无理数的证明:数学家乔治·卡托的证明中,通过建立实数和有理数之间的一一对应关系来证明实数集合比有理数集合更大。该证明引发了数学上著名的“势”悖论。 2. 四色定理的证明:四色定理指的是地图上用四种颜色恰好可以标记出相邻国家,使得没有两个相邻国家颜色相同。虽然该定理的证明非常复杂,但是它展现了数学中引人入胜的思想和证明技巧。 3. 费尔马大定理的证明:费尔马大定理是数学中最有名的未解难题之一,它指出$x^n + y^n = z^n$(其中n大于2)没有正整数解。直到20世纪才由数学家安德鲁·怀尔斯证明,展现了数学中惊人的智慧和创造力。 4. 魔幻方阵的证明:魔幻方阵是一个规则的方形格子,其中每行、每列和对角线上的数字之和都相等。通过构建方程组和矩阵,可以证明魔幻方阵的存在性和特殊性。 5. π的无理性证明:π是一个无理数,即无法表示为两个整数的比值。证明π的无理性需要运用到数学的分析方法和逻辑演绎,给人们带来了探索无穷数学世界的乐趣。 这些有趣的数学证明不仅展示了数学的美妙和深刻,也让我们深入了解数学的逻辑思维和推理方法,丰富了我们对数学的理解和兴趣。 ### 回答3: 数学证明是数学领域中重要的部分,有时可能会让人感到枯燥和困惑。然而,也有一些有趣的数学证明,能够让人对数学产生兴趣。以下是几个有趣的数学证明的例子: 1. 无理数的存在证明证明根号2是无理数。这个证明最早由古希腊数学家赫罗多图斯完成。它使用反证法,假设根号2是有理数,然后推导出一个矛盾的结论,证明了根号2必然是无理数。 2. 费马大定理的证明:费马大定理由法国数学家费马提出,它声称当n大于2时,方程x^n + y^n = z^n没有整数解。这个问题困扰了数学界几个世纪,直到1995年英国数学家安德鲁•怀尔斯证明了这个定理。这个证明十分复杂,但也非常有趣。 3. 四色定理的证明:四色定理声称任何平面上的地图都可以用四种颜色进行着色,且相邻的地区颜色不同。这个定理在19世纪和20世纪早期引起了人们的广泛关注。最终,在1976年,数学家伯纳斯•休斯证明了这个定理。他的证明综合运用了图论和计算机技术,是数学史上的一个重要里程碑。 这些例子只是数学证明中的一小部分,展示了数学的美妙和奇之处。数学证明不仅可以增加我们对数学的兴趣,还有助于培养我们在逻辑推理和问题解决方面的能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值