9.1 回顾本书给出的机器学习的定义9.1,并论述该定义与已有机器学习定义之间的相同与不同之处?
定义9.1:机器学习是人工智能的一个分支,从事研究和构建可以从数据或环境中学习的算法,用以改善性能或做出预测
现定义:从数据中学习来自适应改进预测和决策的人工智能技术。
相同点:都将机器学习明确地归类为人工智能技术,并突出了其在人工智能领域的地位和作用。两者都可以从数据中进行学习用以实现某个学习任务
不同点:新的定义强调了机器学习的一种重要特性,即其能够自适应地改进预测和决策。这意味着机器学习系统不仅仅能够从数据中学习,还能够根据新的数据和情境不断地调整和改进其预测和决策能力,适应不断变化的环境和需求。所以新定义更符合强人工智能的需求。
9.2 论述归纳学习与演绎学习的区别。试分析目前的机器学习算法主要属于哪一种学习方式?
归纳学习:通过观察得到某些模式,根据这些模式形成假设,再由该假设得到某些规则或事实的过程。自底向上的学习方法。