平方和误差函数--代价函数(机器学习)

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/xd15010130025/article/details/88707895


线性回归有一个训练集,我们选择了线性回归,那么要如何选择合适的参量使得我们的预测更为准确呢??
在这里插入图片描述

引入

选择的依据

我们知道了现有的数据是准确的,那么预测就要以现有的数据为根基,尽量的贴合现有的数据,使得差距最小,怎么衡量这个差距呢???我们把i=1i=m(h(xi)yi)2\sum_{i=1}^{i=m}(h(x^i)-y^i)^2

h(xi)h(x^i)代表预测的第i个值,yiy^i代表实际的第i个值。
这个函数称为平方和误差函数,我们要想办法求得这个函数最小的θ0\theta_0θ1\theta_1
在这里插入图片描述

平均平方和误差

为了方便,我们又给出了平均平方和误差的概念
我们把12mi=1i=m(h(xi)yi)2\frac{1}{2m}\sum_{i=1}^{i=m}(h(x^i)-y^i)^2称之为平均平方和误差,之所以是12m\frac{1}{2m},是因为带了平方,后面要用梯度下降法,要求导,这样求导多出的乘2就和二分之一抵消了,一个简化后面计算的技巧

代价函数的定义

我们把J(θ0,θ1)=12mi=1i=m(h(xi)yi)2J(\theta_0,\theta_1)=\frac{1}{2m}\sum_{i=1}^{i=m}(h(x^i)-y^i)^2称之为代价函数,我们求得就是使这个值最小的θ0\theta_0θ1\theta_1
在这里插入图片描述

相关概念

展开阅读全文

没有更多推荐了,返回首页