为什么你的团队需要人工智能票据/图纸处理

在某制造企业的图纸档案室,工程师小张每天要花大量时间手工录入设计图纸的信息;与此同时,财务部门的李姐埋头在成堆的报销票据中,一张张地核对金额和日期,手动输入到系统里。这样的场景在许多传统企业中司空见惯:票据(如发票、收据)和图纸(如工程设计图)管理长期依赖人工,效率低下且错误频出。主要痛点包括:

  • 人工录入耗时且易错:大量票据和图纸数据需要人工逐项录入,不仅占用人力且极易出错。人工处理一份发票平均需要3分钟,而自动化方案可将时间缩短至30秒以内,准确率提升至98%。人工流程中发票一旦存在信息错误,即造成后续对账和报销延误,导致业务不连续,甚至影响整体公司战略出现偏差。
  • 格式多样导致解析困难:票据和图纸的格式往往不统一。财务票据可能来自不同供应商、不同类型(增值税专票、机打发票、车票等),版式各异;设计图纸则因制图软件或版本不同,标题栏和标注格式五花八门。传统规则程序难以覆盖非标准格式,人工识别费力。
  • 版本管理混乱:对于设计图纸而言,版本迭代频繁。工程变更、新版图纸如果不能及时归档,会导致一线人员用到过期信息。缺乏有效的版本控制和检索,往往出现图纸“翻错版本”的事故,影响生产进度和质量。
  • 流程审核繁琐:票据的报销和归档往往需要层层审批,纸质票据在部门间传递易遗失且难跟踪。图纸对外发送还涉及信息安全审核,确保涉密信息不外泄,这些流程纯人工执行既低效又容易出纰漏。

票据与图纸管理,看似琐碎,背后却是企业管理效率、成本控制甚至竞争力的缩影。

过去几年,人工智能在文档识别领域取得了突破性进展。尤其是基于深度学习的OCR和大模型(LLM)技术的成熟,使机器读取和理解票据/图纸成为可能:

票据/图纸自动识别流程示意:通过OCR和深度学习模型,对纸质或电子票据、工程图纸等进行图像预处理、版面分析和字符识别,再结合大模型的语义理解与企业知识库,实现对关键信息的精准提取和结构化入库。智能流程能够根据票据或图纸的类别自动调用适配的模型和规则,输出标准化的数据供业务系统直接使用。

首先,OCR技术飞跃发展。传统OCR对扫描件要求高且易受噪点干扰,而如今的智能OCR采用卷积神经网络等技术,在字符识别准确率和版面还原能力上显著提升,能够处理票据中的复杂版式和印章、签字等干扰。比如发票图像通过OCR可自动识别发票号码、金额、日期等字段,整个过程无需人工过多干预。再者,OCR已不仅限于文字识别,还能检测版面结构,将票据或表单中表格、键值对等结构化信息提取出来,使数据直接可用于系统对接。

更重要的是,大语言模型(LLM)与知识库的结合为文档理解带来了质变。LLM擅长语义理解和上下文推理,能够“读懂”文档的含义。例如,对于复杂的工程图纸,光有OCR提取文字还不够,模型需要理解这些文字所对应的图纸内容(如零件名称、技术要求)以及与企业现有数据库(如产品物料清单)的关联。通过将LLM与企业知识库结合,系统可以利用已有的业务知识优化解析过程:当OCR提取出字段后,LLM基于上下文和知识库校验这些字段的意义是否合理、是否与已知记录匹配,从而大大提高准确率。比如,系统识别一张采购发票上的供应商名称后,可自动在知识库中匹配供应商档案,检查其合法性和往来记录。这种RAG(Retrieval-Augmented Generation)思路将文档内容解析和企业现有数据联通,弥补了传统OCR对业务语义理解不足的短板。

除了文字,AI在对于图像/图纸的视觉理解能力 能够让应用的广度和深度更有保障。基于视觉模型,如今可以分析工程图像中的构型,定位标题栏、明细表等区域并提取信息…….

我们关注到,有相当一部分企业在寻找确切的应用场景,让AI不再仅是简单的“替代人工”,而是企业实现降本增效、以数据驱动决策。

赞奇AIknow正是在这一行业需求背景下应运而生。

赞奇科技推出的 AIknow 平台提供了一套企业级的票据/图纸智能识别入库解决方案。它集成软硬件一体,本地部署,结合大模型能力与插件生态等丰富特质,能够无缝融入企业现有流程。AIknow的核心价值体现在以下几个方面:

  • 本地化部署优势:AIknow以一体机形式部署在企业内部服务器,所有数据全本地存储,不经外网即可完成模型推理。这意味着企业票据和图纸等敏感信息不会上传云端,充分保证数据主权和安全合规。此外,本地部署带来低延时的响应,可实现独立AI计算环境,无需依赖公共云的大模型服务。对于金融、政府等对数据合规要求严苛的行业,这种架构尤为必要。高管必看!DeepSeek推理成本狂泻,助力企业本地化部署低本高效转型 AI 型企业.docx)。
  • 插件与API生态:AIknow内置300+款插件,涵盖OCR、图像生成、搜索引擎、翻译等常用AI能力,可根据业务需要自由组合调用 (AIknow白皮书.pdf)。平台还支持插件式API扩展和对接主流商用LLM接口,方便引入企业自有模型或第三方AI服务,从而适配不同业务场景需求。例如,对于财务票据识别,可接入发票验真API实现自动查验;对于设计图纸处理,可加载CAD制图插件提取特定标记。高集成的API设计使AI能力可以嵌入现有的程序/网站后台,实现自动化处理。换句话说,无论企业使用何种业务系统(ERP、CRM或PLM),AIknow都能通过开放接口嵌入,赋能原有系统智能化。

  • 多账户与负载均衡:AIknow支持多租户账户体系。这对于有众多分支机构或部门的企业非常实用——不同部门可以有各自的AI应用账号,共享同一套平台而数据隔离。底层采用负载均衡技术来分配模型推理任务,确保在高并发请求下系统依然稳定高效。比如月末报销高峰期,成百上千张票据同时提交,AIknow的引擎会智能调度计算资源并行处理,避免某一账户的任务拥堵影响整体性能。负载均衡和弹性扩展架构降低了企业多账户集中使用时的响应时间,提高了采购报销、费用审核流程的流畅度。财务人员无需再担心因瞬时请求量大而系统卡顿,可放心让AI批量处理票据,提高了复杂报销场景下的管理效率。
  • 零代码流程编排:不同企业的票据和图纸处理流程各有差异,AIknow提供了可视化的智能体编排平台,让业务人员在零代码/低代码环境下定制流程。通过拖拽组件,用户可以定义“当有新的发票影像上传时,先调用OCR插件识别文字,再调用LLM解析字段含义,之后连接财务系统录入并触发审批”等一系列操作,无需额外开发即可搭建自动化流程。这个编排平台降低了使用门槛,即使没有专业IT开发背景的人员也能根据业务需求调整AI流程逻辑。这种灵活性确保AI应用可以快速部署与迭代,随着业务变化进行调整,而无需每次都依赖厂商改动代码。对于追求敏捷性的企业来说,AIknow等于提供了一个“搭积木式”的AI流水线搭建工具,极大缩短了研发周期和维护成本。

AIknow本地部署架构示意

如上图所示,AIknow通过赞奇AI网关接入企业内部网络,支持插件化的大模型API调用,与企业内部CRM、ERP、PLM等系统以及统一身份认证(LDAP)打通。架构中的智能编排平台负责业务流程的配置与执行,用户可通过浏览器、Office插件、OA等入口访问AI服务。在本地服务器上部署的vLLM推理引擎利用高性能GPU/CPU提供大模型算力,并可基于公有云形成混合部署。整体设计保证了企业现有系统和AIknow的无缝集成,在数据不出内网的前提下,将AI能力注入业务流程,实现票据和图纸的自动识别入库及后续处理。

实际案例分析

为了进一步了解赞奇AIknow的应用价值,我们来看一个实际案例。在一家制造业龙头企业,引入AIknow后成功实现了设计图纸的智能化管理升级:

背景:该企业的研发设计部门每天产生和接收大量CAD设计图纸。过去,这些图纸由文控人员手动录入图纸编号、版本、关键参数等信息到产品生命周期管理(PLM)系统。不仅耗费大量时间,而且时常出错。一份图纸往往需要修改多版,人工很难保证每次迭代都及时更新;一些关键字段(如零件编码、工艺编号)人工识别困难,导致下游生产引用了过期或错误数据。此外,人工入库流程还需要分别将图纸信息与PLM中的产品信息手动匹配,对接耗时且容易遗漏。这一系列问题导致产品数据管理混乱,制约了生产效率。

解决方案:部署AIknow后,该企业构建了“设计图纸自动入库”智能流程。具体做法是:扫描或接收电子图纸时,先由AIknow集成的OCR和视觉模型对图纸进行解析,自动识别标题栏中的图纸编号、名称、版本、日期等关键字段;然后流程连接到PLM系统接口,自动匹配相应产品条目,将图纸文件和提取的数据归档进去,实现与产品信息的关联同步。在这个过程中,AIknow借助内置的大模型进一步理解图纸的技术要点,将隐含的工艺流程和经验知识抽取出来,沉淀到企业知识库中。整个入库流程由AI自动完成,仅在少数识别不确定的地方提示人工校验,大幅减少了人工参与。

实施成效:经过一段时间运行,该制造企业的图纸管理效率和数据质量显著提升,主要体现在以下几个方面:

  • 效率提升:自动化图纸处理替代了人工录入,大幅缩短了入库时间,节省80%以上的整理时间。过去可能需要多人协作一整天整理的图纸资料,现在几个小时内即可完成。
  • 错误率下降:AI识别结合必要的人工校正,确保了数据准确无误。图纸信息录入错误率明显降低,产品数据管理质量提升。尤其在版本控制上,新旧版本切换准确及时,杜绝了生产使用过期图纸的情况。

  • 知识沉淀:通过AI抽取图纸中的技术要点和工艺流程,企业构建了内部知识库,实现了智能知识积累。这些沉淀的知识可用于新员工培训和经验传承,技术文档不再只是“死数据”,而成为可检索的资产。
  • 系统集成优化:AIknow与PLM以及其他IT系统深度对接,实现了数据流通和流程优化。设计、更改、一键归档的流程打通后,设计与生产部门协同更高效,缩短了产品从设计到投产的周期。

该案例清晰展现了AIknow在制造业图纸管理中的价值:不仅解放人力、提高准确率,还带来了流程标准化知识增值。同样的理念也适用于金融领域的票据管理。例如某金融公司上线AIknow用于报销票据处理后,报销流程从提交到完成的周期缩短了近一半,财务人员将精力从繁杂的录入校对转向异常票据的审核和分析上,实现了更高层次的价值产出。据统计,全面引入AI进行发票处理可使成本节省高达90%,处理速度提高数倍——这些数据佐证了智能化升级带来的巨大收益。

AIknow不仅是一个工具,更可能成为企业数字化转型道路上的“智慧大脑”:连接人与知识,贯通业务流程,提高企业对信息的掌控力。通过不断的技术革新和实践积累,AIknow将进一步优化智能文档管理的深度和广度,帮助企业在数字时代保持高效、严谨的运营,并从日益增长的数据中挖掘新的价值。传统行业正在被AI重新定义,对于企业决策者而言,拥抱这一趋势、善用像赞奇AIknow这样的本地化AI方案,无疑将在激烈的市场竞争中抢占先机,实现降本增效与创新发展的双赢。

点击立即体验AIknow,开启融媒体智能升级!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值