两阶段鲁棒优化模型 多场景采用matlab编程两阶段鲁棒优化程序,考虑四个场景

两阶段鲁棒优化模型 多场景
采用matlab编程两阶段鲁棒优化程序,考虑四个场景,模型采用列与约束生成(CCG)算法进行求解,场景分布的概率置信区间由 1-范数和∞-范数约束,程序含拉丁超立方抽样+kmeans数据处理程序,程序运行可靠,有详细资料


两阶段鲁棒优化模型在多种场景下的应用

引言: 在现实生活中,很多问题都是多变且具有不确定性的。对于这些问题,我们需要设计一种鲁棒的优化模型来应对各种场景的变化。本文介绍了一种基于两阶段鲁棒优化模型的方法,在多个场景中进行了实证研究,并采用了matlab编程进行求解。

一、背景及相关工作综述 在鲁棒优化领域,研究者们提出了很多方法来解决不确定性问题。其中,两阶段鲁棒优化模型是一种常用的方法。该方法将优化问题分为两个阶段:第一阶段通过收集场景数据进行建模,并考虑不确定性约束;第二阶段通过优化算法求解得到最优解。在实际应用中,这种方法已经取得了很好的效果。

二、模型设计与实施 本文采用了matlab编程语言来实现两阶段鲁棒优化模

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值