点集拓扑摘记

1 点与集合的关系

\qquad 为了描述 R n R^{n} Rn 中的点 x 0 x_{0} x0 与集合 E E E 之间的关系,有两种分类方法,分别为:

{     内点     界点     外点 或者 {     聚点     孤立点     外点 \qquad\qquad\begin{cases} \ \ \ \ 内点 \\ \\ \ \ \ \ 界点 \\ \\ \ \ \ \ 外点 \\ \end{cases}\qquad\qquad 或者 \qquad\qquad \begin{cases} \ \ \ \ 聚点 \\ \\ \ \ \ \ 孤立点 \\ \\ \ \ \ \ 外点 \\ \end{cases}     内点    界点    外点或者     聚点    孤立点    外点
\newline
\qquad 两种分类方法中,外点的定义是相同的。
\qquad

1.1 内点、外点、界点

\qquad 假设点 x 0 ∈ R n x_{0} \in R^{n} x0Rn ,集合 E ⊂ R n E \subset R^{n} ERn,那么点与集合的关系可以是:

\qquad ( 1 ) (1) (1) x 0 x_{0} x0 附近全是集合 E E E 的点

\qquad ( 2 ) (2) (2) x 0 x_{0} x0 附近没有集合 E E E 的点

\qquad ( 3 ) (3) (3) x 0 x_{0} x0 附近既有集合 E E E 的点,又有不属于集合 E E E 的点

\newline
\qquad 这三种关系分别对应着内点外点界点的定义:

\qquad ( 1 ) (1) (1) 内点 (interior point) \text{(interior\ point)} (interior point)

\qquad \qquad 存在 x 0 x_{0} x0 的某个邻域 B ( x 0 , r ) B(x_{0}, r) B(x0,r),使得 B ( x 0 , r ) ⊂ E B(x_{0}, r) \subset E B(x0,r)E
\qquad \qquad 即: ∃   r > 0 \exist \ r>0  r>0,使得 B ( x 0 , r ) ⊂ E B(x_{0}, r) \subset E B(x0,r)E
\qquad \qquad 内点 x 0 ∈ E x_{0} \in E x0E集合 E E E 中)

\qquad ( 2 ) (2) (2) 外点 (exterior point) \text{(exterior\ point)} (exterior point)

\qquad \qquad 如果 x 0 x_{0} x0 E E E余集 E c E^{c} Ec 的内点
\qquad \qquad 即: ∃   r > 0 \exist \ r>0  r>0,使得 B ( x 0 , r ) ∩ E = ∅ B(x_{0}, r) \cap E = \varnothing B(x0,r)E=
\qquad \qquad 外点 x 0 ∉ E x_{0} \notin E x0/E不在集合 E E E 中)

\qquad ( 3 ) (3) (3) 界点 (boundary point) \text{(boundary\ point)} (boundary point)

\qquad \qquad 既非内点,又非外点(任一邻域中既有属于 E E E 的点,也有不属于 E E E 的点)
\qquad \qquad 即: ∃   r > 0 \exist \ r>0  r>0,使得 B ( x 0 , r ) ∩ E ≠ ∅  且  B ( x 0 , r ) ∩ E c ≠ ∅ B(x_{0}, r) \cap E \neq \varnothing\ 且\ B(x_{0}, r) \cap E^{c} \neq \varnothing B(x0,r)E=  B(x0,r)Ec=
\qquad \qquad 界点可能在集合 E E E 中,也可能不在

\newline
\qquad 从而,可以定义出:
int ( E ) :   E \qquad\qquad \text{int}(E):\ E int(E): E内部,全体内点构成的集合
ext ( E ) :   E \qquad\qquad \text{ext}(E):\ E ext(E): E外部,全体外点构成的集合
∂ E :     E \qquad\qquad \partial E:\quad \ \ \ E E:   E边界,全体界点构成的集合
\qquad

1.2 聚点、孤立点、外点

\qquad 假设点 x 0 ∈ R n x_{0} \in R^{n} x0Rn ,集合 E ⊂ R n E \subset R^{n} ERn
\qquad 研究点集之间的逼近性质时,内点界点可能具有相同的性质:若存在 E E E 中互异的点列 { x n } ∣ 1 ∞ \{x_{n}\} \big|_{1}^{\infty} {xn} 1,使 x n ⟶ x 0   ( n → ∞ ) x_{n}\longrightarrow x_{0} \ (n \rightarrow \infty) xnx0 (n),那么 x 0 x_{0} x0 既有可能是内点,也有可能是界点 \newline
\qquad 点和集合的关系还可以描述为:聚点、孤立点、外点(外点的定义是相同的)。

( 1 ) \qquad(1) (1) 聚点 (limit point) \text{(limit\ point)} (limit point)

1 ) \qquad\qquad 1) 1) x 0 x_{0} x0 的任一邻域 B ( x 0 , r ) B(x_{0}, r) B(x0,r) 中都含有 E E E无限多个点
2 ) \qquad\qquad 2) 2) x 0 x_{0} x0 的任一邻域 B ( x 0 , r ) B(x_{0}, r) B(x0,r) 至少含有一个属于 E E E 而异于 x 0 x_{0} x0 的点   \newline\qquad\qquad    即: ∀   r > 0 \forall \ r>0  r>0,都有 B ( x 0 , r ) ∩ ( E \ { x 0 } ) ≠ ∅ B(x_{0}, r) \cap \left( E \backslash \{x_{0}\} \right) \not= \varnothing B(x0,r)(E\{x0})=
3 ) \qquad\qquad 3) 3) 存在 E E E互异的点构成的点列 { x n } ∣ 1 ∞ \{x_{n}\} \big|_{1}^{\infty} {xn} 1,使 x n ⟶ x 0 ( n → ∞ ) x_{n}\longrightarrow x_{0}(n \rightarrow \infty) xnx0(n)
4 ) \qquad\qquad 4) 4) 有限集没有聚点
5 ) \qquad\qquad 5) 5) 聚点不一定在集合 E E E 中(可能在,也可能不在)

( 2 ) \qquad(2) (2) 孤立点 (isolated point) \text{(isolated\ point)} (isolated point)

\qquad\qquad x 0 ∈ E x_{0} \in E x0E,但不是 E E E 的聚点
\qquad\qquad 即:若 x 0 ∈ E x_{0} \in E x0E ∃   r > 0 \exists \ r >0  r>0,使 B ( x 0 , r ) ∩ E = { x 0 } B(x_{0}, r) \cap E = \{x_{0}\} B(x0,r)E={x0}

( 3 ) \qquad(3) (3) 外点 (exterior point) \text{(exterior\ point)} (exterior point)

\qquad\qquad 如果 x 0 x_{0} x0 E E E 的余集 E c E^{c} Ec 的内点
\qquad\qquad 即: ∃   r > 0 \exist \ r>0  r>0,使得 B ( x 0 , r ) ∩ E = ∅ B(x_{0}, r) \cap E = \varnothing B(x0,r)E=
\qquad\qquad 外点 x 0 ∉ E x_{0} \notin E x0/E不在集合 E E E 中)
\qquad

1.3 两种分类方法之间的一些联系

\qquad ( 1 ) (1) (1) 内点必然是聚点,必然在 E E E \newline
\qquad ( 2 ) (2) (2) 聚点未必是内点 —— 聚点可能是内点,也可能是界点 \newline
\qquad ( 3 ) (3) (3) 孤立点必然是界点,必然在 E E E \newline
\qquad ( 4 ) (4) (4) 界点未必是孤立点 —— 界点可能是聚点,也可能是孤立点 \newline
\qquad ( 5 ) (5) (5) 界点、聚点可以在 E E E 中,也可以不在 E E E

\qquad

2. 闭包: 所有附着点 (adherent point) 的集合

1.  闭包 \textcolor{red}{1.\ 闭包} 1. 闭包

\qquad 在两种分类方法中,外点的定义是相同的,因此考虑 “外点的反面”

\qquad 如果 ∀   r > 0 \forall \ r>0  r>0,都有 B ( x 0 , r ) ∩ E ≠ ∅ B(x_{0}, r) \cap E \not = \varnothing B(x0,r)E=,即: x 0 x_{0} x0 的任意邻域中都包含 E E E 中的点,则称 x 0 x_{0} x0附着点 (adherent point) \text{(adherent\ point)} (adherent point)(或称接触点)。 \newline

\qquad 实际上,附着点可能是: \newline
{     内点     界点 或者 { 聚点     孤立点 \qquad\qquad\left\{ \begin{matrix} \ \ \ \ 内点 \\ \\ \ \ \ \ 界点 \\ \end{matrix}\qquad 或者 \qquad \right\{ \begin{matrix} 聚点 \\ \\ \ \ \ \ 孤立点 \\ \end{matrix}     内点    界点或者 聚点    孤立点

\qquad
\qquad 可以用下图来描述:
\qquad 在这里插入图片描述
\newline
\qquad 在上图中,红色方框表示 “ “ 附着点 (adherent point) \text{(adherent\ point)} (adherent point) 的全体 ” ” ,即闭包 (closure) \text{(closure)} (closure) ,用 E ‾ \overline{E} E 表示【很关键的一点,直接产生了很多性质】。
\qquad

2.  开集、闭集 \textcolor{red}{2.\ 开集、闭集} 2. 开集、闭集

  • 定义如下集合:

( 1 ) \qquad(1) (1) 内核 E ∘   : E^{\circ}\ : E : 全体内点的集合

( 2 ) \qquad(2) (2) 边界 ∂ E : \partial E: E: 全体界点的集合

( 3 ) \qquad(3) (3) 导集 E ′   : E^{'}\ : E : 全体聚点的集合

( 4 ) \qquad(4) (4) 闭包 E ‾    : \overline{E}\ \ : E  :  全体附着点的集合,即 E ‾ = E ∘ ∪ ∂ E \overline{E}=E^{\circ} \cup \partial E E=EE 或  E ‾ = E ′ ∪ { 孤立点全体 } \overline{E}=E^{'} \cup \{\textbf{\scriptstyle 孤立点全体}\} E=E{孤立点全体}

\qquad   闭包的另一个定义: E E E 和它的全体聚点所组成的集合,即 E ‾ = E ′ ∪ E \overline{E}=E^{'} \cup E E=EE

\qquad 因此

E ‾ = E ′ ∪ E = E ∘ ∪ ∂ E = E ′ ∪ { 孤立点全体 } \qquad\qquad\overline{E}=E^{'} \cup E=E^{\circ} \cup \partial E = E^{'} \cup \{\textbf{\scriptstyle 孤立点全体}\} E=EE=EE=E{孤立点全体}

\qquad

  • 若集合 E E E 满足 E = E ∘ E=E^{\circ} E=E E E E 中每一个点都是内点),则称 E E E开集 \newline
    此时, E E E 中不包含界点,所有的界点都不在 E E E
    \qquad
  • 若集合 E E E 满足 E = E ‾ E=\overline{E} E=E,则称 E E E闭集 \newline
    此时,所有的聚点都在 E E E 中,即: E ′ ⊂ E E^{'}\subset E EE
       所有的界点也都在 E E E 中,即: ∂ E ⊂ E \partial E\subset E EE

闭包 E ‾ \overline{E} E 也是闭集,即: E ‾ = E ‾ ‾ \overline{E}=\overline{\overline{E}} E=E ,是包含 E E E 的最小闭集

\qquad 闭集的情况,如下图所示:
\qquad 在这里插入图片描述

3.  相关定理 \textcolor{red}{3.\ 相关定理} 3. 相关定理

定理1 \textbf{定理1} 定理1: ∀   E ⊂ R n \forall\ E\subset R^n  ERn E ∘ E^{\circ} E 是开集, E ′ E^{'} E E ‾ \overline E E 都是闭集。

定理2 \textbf{定理2} 定理2:(开集与闭集的对偶性)
     设 E ⊂ R n E\subset R^n ERn 是开集,则其余集 E C E^C EC 是闭集;
     设 E ⊂ R n E\subset R^n ERn 是闭集,则其余集 E C E^C EC 是开集。
    
定理3 \textbf{定理3} 定理3: 任意多个开集的并,仍是开集;
     有限多个开集的交,仍是开集。
    
定理4 \textbf{定理4} 定理4: 任意多个闭集的交,仍是闭集;
     有限多个开集的并,仍是闭集。
\qquad

3. 稠密性和可分性

\qquad ( X , d ) (X,d) (X,d) 为距离空间,集合 A , E ⊂ X A,E\sub X A,EX

稠密性 \textcolor{red}{稠密性} 稠密性

\qquad 如果 E E E 中每个点 x x x 的任一邻域 B ( x , r ) B(x, r) B(x,r) 都包含 A A A 中的点,即: E ⊂ A ‾ E\sub\overline A EA,则称 A A A E E E 中是稠密的

( 1 ) \qquad(1) (1) E ⊂ A ‾ E\sub\overline A EA,这就说明 E E E 中任一点或者是 A A A 的聚点,或者就是 A A A 中的点
( 2 ) \qquad(2) (2) x ∈ E x\in E xE A A A 的聚点,也就是存在点列 { x n } ⊂ A \{x_n\}\sub A {xn}A,使得 x n ⟶ x   ( n → ∞ ) x_{n}\longrightarrow x\ (n \rightarrow \infty) xnx (n)

稠密性表明 ∀   x ∈ E \forall\ x\in E  xE 都可以用 A A A 中的点来逼近。

稠密子集 \textcolor{red}{稠密子集} 稠密子集

\qquad 如果 A A A 在全空间 X X X 中稠密,此时 X = A ‾ X=\overline A X=A,则称 A A A X X X 中的稠密子集
\qquad
可分性 \textcolor{red}{可分性} 可分性

\qquad ( X , d ) (X,d) (X,d) 中存在一个可数的稠密子集,则称 ( X , d ) (X,d) (X,d) 是可分的距离空间。
\qquad

4. 举例

\qquad 考虑下面3个集合: \newline
E 1 = { 1 , 1 2 , … , 1 n , …   } E 2 = { 0 , 1 , 1 2 , … , 1 n , …   } E 3 = { 0 , 1 , 1 2 , … , 1 n , } \qquad\qquad\begin{aligned} E_{1} &= \{1, \dfrac{1}{2}, \dots, \dfrac{1}{n}, \dots \} \\ E_{2} &= \{0,1, \dfrac{1}{2}, \dots, \dfrac{1}{n}, \dots \} \\ E_{3} &=\{0,1, \dfrac{1}{2}, \dots, \dfrac{1}{n}, \} \end{aligned} E1E2E3={1,21,,n1,}={0,1,21,,n1,}={0,1,21,,n1,}

\qquad E 1 : E_{1}:\qquad E1: 内点界点 x 0 = 0 x_{0}=0 x0=0 x k = 1 k   ( k > 0 ) x_{k}=\dfrac{1}{k} \ (k>0) xk=k1 (k>0)
\qquad\qquad\qquad 聚点为0(不在 E 1 E_{1} E1 中),孤立点 x k = 1 k   ( k > 0 ) x_{k}=\dfrac{1}{k} \ (k>0) xk=k1 (k>0) \newline
\qquad E 2 : E_{2}:\qquad E2: 内点界点 x 0 = 0 x_{0}=0 x0=0 x k = 1 k   ( k > 0 ) x_{k}=\dfrac{1}{k} \ (k>0) xk=k1 (k>0)
\qquad\qquad\qquad 聚点为0(在 E 2 E_{2} E2 中),孤立点 x k = 1 k   ( k > 0 ) x_{k}=\dfrac{1}{k} \ (k>0) xk=k1 (k>0) \newline
\qquad E 3 : E_{3}:\qquad E3: 内点界点 x 0 = 0 x_{0}=0 x0=0 x k = 1 k   ( 1 ≤ k ≤ n ) x_{k}=\dfrac{1}{k} \ (1 \leq k \leq n) xk=k1 (1kn)
\qquad\qquad\qquad 聚点为0( E 3 E_{3} E3 是有限集),孤立点 x 0 = 0 x_{0}=0 x0=0 x k = 1 k   ( k > 0 ) x_{k}=\dfrac{1}{k} \ (k>0) xk=k1 (k>0)

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值