过拟合与数据不平衡

机器学习 专栏收录该内容
35 篇文章 0 订阅

过拟合与数据不平衡


什么是过拟合?

过拟合就是学习器对训练样本数据的学习的过于彻底,将一些训练样本的噪声或者不属于全体样本的一般特征也学习了,造成在训练样本上效果表现很好而在测试样本上表现效果非常差的一种现象。


为什么会过拟合?

  1. 对于数据样本,可能存在隐单元的表示不唯一,即产生分类的决策面不唯一,随着学习的进行,BP算法使权值可能收敛过于复杂的决策面。
  2. 权值学习迭代次数足够多,拟合了训练数据中的噪声和训练样例中没有代表性的特征。

如何判断过拟合?

首先,介绍三种误差定义:

训练误差(training error)

Jtrain(θ)=1mtraini=1mtrain(y^iyi)2(1) (1) J t r a i n ( θ ) = 1 m t r a i n ∑ i = 1 m t r a i n ( y ^ i − y i ) 2

验证误差(validation error)
Jval(θ)=1mvali=1mval(y^iyi)2(2) (2) J v a l ( θ ) = 1 m v a l ∑ i = 1 m v a l ( y ^ i − y i ) 2

测试误差(test error)
Jtest(θ)=1mtesti=1mtest(y^iyi)2(3) (3) J t e s t ( θ ) = 1 m t e s t ∑ i = 1 m t e s t ( y ^ i − y i ) 2

其次,关于学习曲线。

模型的误差 Error=Bias+Variance E r r o r = B i a s + V a r i a n c e Error E r r o r 反应的是整个模型的准确度; Bias B i a s 反应的是模型在样本的输出和真实值之间的误差,即模型本身的精确度; Variance V a r i a n c e 反映的是模型每一次输出结果与模型输出期望之间的误差,即模型的稳定性。

训练误差和验证误差随训练样本的变化曲线1训练误差和验证误差随训练样本的变化曲线2
从上面两幅图中可以看出:随着训练样本 m m 的增加,训练误差其实是一直在增加而验证误差是一直在减小的。在最开始的时候,训练误差小而验证误差大,这就是一种过拟合的状态。随着学习的样本不断增加,两个误差逐渐接近,但始终保持着Jtrain(θ)>Jval(θ)。两条曲线之间的间隔(gap)可以描述成模型的方差(Variance),高方差就意味着过拟合。从训练样本大小的角度来看,对减小方差却是有一定作用的。

特征维度d的学习曲线
从上图可以看出,验证误差很高时,训练误差可能高也可能低。验证误差高训练误差也高,此时称为高偏差低方差,这时候应该存在欠拟合;验证误差高训练误差低时,此时成为低偏差高方差,这时候应该存在过拟合。

前两种都是从绘制的曲线中看出来的,还有一个方式就是通过通过数值计算,也是前两种方法的核心想法。通过计算机中误差的数值,然后通过比较来观察。常见的方法就是采用一种常用模型评估方法—— k k 折交叉验证法


怎么预防过拟合?

  1. 数据清洗
    导致过拟合的一个原因就可能是数据不纯导致的,若是出现过拟合就需要考虑是否需要重新进行数据清洗。数据清洗的目的之一就是减少特征,留下具有代表性的特征。

  2. 数据增强
    在训练过程中真正使用的训练数据有点少,通通过数据增强来增加训练数据。常用的方法有:
    <1> 从数据来源处采集更多的数据;
    <2> 通过原有的数据作一些简单变化,如添加噪声等;
    <3> 重采样;
    <4> 估计当前数据的分布模型用以产生更多的数据。

  3. 正则化
    正则化参数λ的大小也会引起过拟合和欠拟合问题:过大的值调节能力太强易引发欠拟合;过小的值调节能力太弱易引发过拟合。

    <0> L0 L 0 正则项
    L0 L 0 正则是基于 L0 L 0 范数的。指向量中非零元素的个数。

    <1> L1 L 1 正则项
    L1 L 1 正则是基于 L1 L 1 范数的,即在代价函数之后添加 一个 L1 L 1 范数和项。

    C=C0+λi=1m|wi| C = C 0 + λ ∑ i = 1 m | w i |
    其中 C0 C 0 为原来的代价函数, λ λ 为正则项系数。那么参数 w w 的基于梯度下降法的更新规则可以变为:
    w:=w+αC0w+βλ sgn(w)
    其中, α<0,β<0,sgn() α < 0 , β < 0 , s g n ( ⋅ ) 为符号函数。从该式子可以看出,当 w w 在0附近波动时,正则项的存在会使得w向0靠近。但是注意 L1 L 1 范数在0点不可导,因此需要使用不含正则项的代价函数来更新权值 w w

    <2>L2正则项
    L2 L 2 正则是基于 L2 L 2 范数的,即在代价函数之后添加 一个 L2 L 2 范数和项。

    C=C0+λ2i=1mw2i C = C 0 + λ 2 ∑ i = 1 m w i 2
    其中 C0 C 0 为原来的代价函数, λ λ 为正则项系数。那么参数 w w 的基于梯度下降法的更新规则可以变为:
    w:=w+αC0w+βλ
    其中, α<0,β<0 α < 0 , β < 0

    总结:正则项的引入是为了降低模型的复杂度,从而避免过分拟合训练数据,包括噪声和异常点。从另一个角度来看,正则项的引入是假设模型服从先验概率,只是不同的正则项所代表的分布是不一样的。 L1 L 1 是拉普拉斯先验而 L2 L 2 是高斯先验,均服从均值为0,协方差为 1λ 1 λ

    • dropout
      在著名的AlexNet卷积神经网络中就采用了该种方法。在神经网络的训练过程中通过使隐层的一些神经元在某些时候停止工作(休眠)而输入输出层神经元个数不变。

    • early stopping
      在模型的学习过程中,常常采用的迭代的方法来更新训练参数,比如常见的梯度下降算法。而early stoppoing 就是一种用来打断迭代过程的方法。

      具体作法如下:在每一次遍历完所有的训练集数据后,计算验证集的精度,当其精度不在提高时(可以假设精度多少次迭代之内变化不超过一个阈值就认为不在变化;或者,记录最好的精度,之后多少代之内均未有更高的精度出现则认为不变了)就停止迭代。


    • 数据不平衡

      在机器学习使用的数据集中,不同种类的数据量可能相差很大,而我们往往比较关注其中那一部分量小的数据,这就是数据不平衡。当训练过程中使用不平衡的数据得到的模型并不是很准确。通常可以使用一下几种方法来检测异常类。

      1)使用正确的评价指标
      模型的评价指标有很多种,可以采用不同的指标来衡量,避免数据不平衡训练出不好的模型结果。
      2)重新采用训练集
      可以使用欠采样或者过采样来进行数据的重新采样。
      3)正确使用K折交叉验证
      使用过采样来平衡数据时,应当使用交叉验证。
      4)组合不同重采样数据
      用少数类的所有样本和多数类的n个不同样本训练多个模型然后进行组合。
      5)用不同比例重新采样数据
      可以使用不同的比例重采样数据集,然后训练多个模型。
      6)聚类
      可以换一种思路,减少数据量大的类别也可以起到平衡数据量的作用。常用的方法可以对多数类进行聚类,使用质心来替代这一类,这样就能减少多数类的数据量。
      7)设计模型
      可以设计适用于数据不平衡的模型,如XGBoost在模型内部对数据了很不错的处理。也可以通过设计一个损失函数来惩罚少数类的错误分类。


      References:
      [1]欠拟合、过拟合及其解决方法
      [2]机器学习算法中的过拟合与欠拟合
      [3]防止过拟合以及解决过拟合
      [4]机器学习中防止过拟合的处理方法
      [5] Stanford机器学习—第六周.学习曲线、机器学习系统的设计
      [6]对机器学习中学习曲线的理解
      [7]过拟合及其解决方法

  • 0
    点赞
  • 0
    评论
  • 2
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2020 CSDN 皮肤主题: 撸撸猫 设计师:马嘣嘣 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值