计算机视觉
xholes
这个作者很懒,什么都没留下…
展开
-
立体视觉:算法与应用(一)
文章翻译了是外国学者Stefano Mattoccia的一份talk,介绍了一些关于双目立体视觉的基本知识和算法。本人刚刚开始学习,限于自身的水平,翻译的不当之处请谅解。翻译 2016-09-27 15:43:17 · 2597 阅读 · 0 评论 -
图像增强:频域
图像增强:频域原创 2017-09-28 12:25:35 · 1173 阅读 · 0 评论 -
单目视觉(6):SFM之矩阵估计 (五)
SFM之矩阵估计引入从单幅图像中是不可能获得图像中像素点对应的深度的,因此至少需要多余两幅的相关图像才能通过一定的方法来估计图像中像素点对应的深度信息。由此,专门来几何角度来研究从多幅图像获取相关信息的方法称之为多视角几何学,包括利用几何的方法来获取不同图像在采集过程中,物体投影所满足的一些几何约束条件。在SFM中,我们也是通过多幅图像来恢复物体的三维信息。因此,该问题其实也就...原创 2018-04-14 20:26:10 · 3537 阅读 · 1 评论 -
单目视觉(3):SFM之SIFT(三)
SFM之SIFT(三)SFM之SIFT(三)SIFT(scale-invariant-feature transform)SIFT特性:算法步骤opencv源码实例ReferenceSIFT(scale-invariant-feature transform)SIFT特性:局部特征,对旋转,尺度(缩放),平移,亮度(光照)保持不变性对视...原创 2018-03-30 13:07:25 · 1679 阅读 · 0 评论 -
单目视觉(2):SFM之概述(一)
SFM: Struct From Motion 概述(一)SFM: Struct From Motion 概述(一)特征提取特征匹配矩阵计算三维重建参数优化References特征提取特征点是图像中的一些特殊点,具有一些特殊的属性。这样的特征点相对于一些普通的点具有相对较多的信息量。我们可以根据这样的特征点,来描述图像中的关键信息。图像特征主要包括线...原创 2018-04-14 20:39:11 · 8381 阅读 · 2 评论 -
单目视觉学习(1)
单目视觉(1)note:学习一下单目视觉,本文只代表作者写本文时的想法和理解。限于当时的水平和学习的进展,可能有些错误,望谅解。单目视觉(1)问题提出基本原理单帧测距多帧测距References问题提出人眼观察世界通过两个视角来形成对空间的基本认知。模仿人眼的原理,可以使用多个摄像机同时采集同一空间中的图像,然后通过一定的算法来实现对三维空间的...原创 2018-03-25 21:47:42 · 13528 阅读 · 2 评论 -
单目视觉(7):SFM之Bundle Adjustment (六)
光束平差法:Bundle Adjustment引入Bundle Adjustment (BA)的翻译可以看出其利用的一组数据(“光束”)来进行最小化误差(“平差”),其本质就是一种优化算法。在SFM中,我们采用了多个视角的不同图像来计算物理世界的实际位置(三角定位)。那么三角定位得到的物体的三维位置信息肯能是不准确的。我们按照这个信息再次重新在像平面上进行投影(重投影),得到的新的...原创 2018-04-13 22:59:07 · 1578 阅读 · 0 评论 -
单目视觉(5):SFM之特征点匹配(四)
SFM之特征点匹配(四)SFM之特征点匹配(四)引入相似性匹配K-d树(K-dimensional Tree)误匹配FLANN利用FLANN进行特征点匹配Reference引入在经过对每幅图像进行特征提取之后,可以发现在一幅图像中存在非常多的特征点(特殊情况下可能特征点很少)。那么如何去找出不同图像中的哪些特征点反应在现实世界中是同一个物理...原创 2018-04-04 21:14:22 · 3834 阅读 · 0 评论 -
光流法:Farneback
光流法:Farnback光流法:Farnback基本假设Farneback光流法图像模型位移估计Reference现实世界中,万物都在在运动,且运动的速度和方向可能均不同,这就构成了运动场。物体的运动投影在图像上反应的是像素的移动。这种像素的瞬时移动速度就是光流。光流法是利用图像序列中的像素在时间域上的变化、相邻帧之间的相关性来找到的上一帧跟当前帧间存在的...原创 2018-05-03 16:15:05 · 11741 阅读 · 0 评论 -
单目视觉(4):SFM之相机模型(二)
SFM之相机标定(二)成像模型(Imaging Model)现代一句城乡模型大致可以分为小孔成像相机和透镜成像相机。 以下分别是两种成像模型的光路图。 在透镜成像模型中,我们依据物理学知识,已知透镜焦距fff,像距mmm,物距nnn,可以得到: 1f=1m+1n1f=1m+1n\frac{1}{f}=\frac{1}{m} + \frac{1}{n} 而在小孔成像模型中,...原创 2018-04-02 10:02:41 · 7662 阅读 · 1 评论 -
OpenCV学习(5): 图像畸变校正
畸变校正畸变摄像机的成像过程主要是主要涉及到几个坐标系的变换(具体过程可以参考相机模型):Created with Raphaël 2.1.2物体世界坐标 摄像机坐标 图像物理坐标 图像像素坐标 从摄像机成像畸变的产生于是其“天生”的,不可避免的,这主要是由于透镜成像原理导致的。其畸变的原理可以参考相机模型)。它的畸变按照原理可以分解为切向畸变和径向畸变。 [x′y′]=...原创 2018-06-07 14:41:51 · 38779 阅读 · 5 评论 -
图像增强:空间域
图像增强:空间域原创 2017-09-28 00:29:45 · 726 阅读 · 0 评论 -
图像分割
图像分割原创 2017-09-27 22:33:13 · 734 阅读 · 0 评论 -
图像的几何变换
几何变换是图像处理和图像分析的重要内容,按照变换性质可以分为位置变换、形状变换以及复合变换。图像的几何变换方式是使得图像在变换矩阵T的作用下变换为另一幅图像。原创 2016-11-25 15:02:59 · 5480 阅读 · 1 评论 -
立体视觉:算法与应用(二)
本文翻译的外国学者的一份talk,主要内容是关于立体视觉算法和应用的基础知识。限于个人水平,如有疏漏之处请谅解。翻译 2016-09-27 19:41:41 · 1415 阅读 · 0 评论 -
立体视觉:算法与应用(三)
本文翻译的外国学者的一份talk,主要内容是关于立体视觉算法和应用的基础知识。限于个人水平,如有疏漏之处请谅解。翻译 2016-09-27 20:49:52 · 2030 阅读 · 0 评论 -
立体视觉:算法与应用(四)
本文翻译的外国学者的一份talk,主要内容是关于立体视觉算法和应用的基础知识。限于个人水平,如有疏漏之处请谅解。本部分主要内容为匹配代价的聚合。翻译 2016-09-28 10:00:49 · 1107 阅读 · 0 评论 -
立体视觉:算法与应用(六)
本文翻译的外国学者的一份talk,主要内容是关于立体视觉算法和应用的基础知识。限于个人水平,如有疏漏之处请谅解。翻译 2016-09-28 17:16:47 · 1076 阅读 · 0 评论 -
立体视觉:算法和应用(五)
本文翻译的外国学者的一份talk,主要内容是关于立体视觉算法和应用的基础知识。限于个人水平,如有疏漏之处请谅解。本部分主要内容关于代价聚合:窗口的变化以及聚合的一些其他算法。翻译 2016-09-28 12:37:14 · 2607 阅读 · 0 评论 -
立体视觉:算法和应用(七)
本文翻译的外国学者的一份talk,主要内容是关于立体视觉算法和应用的基础知识。限于个人水平,如有疏漏之处请谅解。翻译 2016-09-28 19:37:27 · 1471 阅读 · 0 评论 -
图像的统计特征
图像的一些基本统计特征。原创 2016-11-22 21:59:26 · 22358 阅读 · 0 评论 -
图像的运算
图像的一些基本运算。原创 2016-11-23 11:58:46 · 3410 阅读 · 0 评论 -
图像编码(一)
图像编码的一些基本知识。原创 2016-11-23 16:25:24 · 10565 阅读 · 0 评论 -
图像编码(二)
图像的几种压缩编码方式。原创 2016-11-24 21:26:32 · 3561 阅读 · 0 评论 -
点集配准---CPD(Coherent Point Drift)
点集配准—CPD(Coherent Point Drift)原创 2018-11-28 12:46:03 · 18356 阅读 · 5 评论