点集配准---CPD(Coherent Point Drift)

点集配准—CPD(Coherent Point Drift)

问题引入

给定两个点集,如何将两个点集进行配准,也就是对齐两个点集,找到相互对应的点。在低维、‘干净’的数据集中下可以尝试许多其他的方法。当数据的维度持续增长,并包含噪音或者冗余点时,问题就变得复杂了。

我们的目的是给定一个点集,在另一个点集中找到其对应点。如果将这种对应看成是一种概率,真正的对应点概率为1,错误的对应点概率值为0,当然,这是最理想的情况。也就是说, 我们可以使用一个概率值了描述这种对应关系,概率值越大,这种对应关系的确定性也就越大。既然涉及到了概率,那么就就会考虑到概率模型:均匀分布、二项分布、正态分布等。因此,需要选择一个正确的模型来描述这种对应关系。如果针对一个点与一个点的对应关系, 可以使用正态分布(高斯分布)来描述,那个当存在多个点时,恰好可以使用混合高斯模型(GMM: Gaussian Mixture Model)来进行描述。

此时,将两个点集的配准问题转化成一个概率密度估计的问题。也即是求解混合高斯模型的参数问题。


问题定义

给定两个点集 X D × N = { x 1 , x 2 , ⋯   , x N } \bold{X_{D\times N} }= \{x_1, x_2, \cdots, x_N\} XD×N={x1,x2,,xN}, Y D × M = { x 1 , x 2 , ⋯   , x M } \bold{Y_{D\times M} }= \{x_1, x_2, \cdots, x_M\} YD×M={x1,x2,,xM},点集的维度是 D D D, 两个点集之间的变换关系 X = T ( Y , θ ) \bold X = \Tau(Y, \theta) X=T(Y,θ)。假定以点集 Y Y Y为GMM的各个分模型(高斯模型的中心), X X X中的数据点就可以看成是由该模型生成的数据点。此时,GMM的概率密度函数可以写成:
p ( x ) = ∑ m = 1 M P ( m ) p ( x ∣ m ) p ( x ∣ m ) = 1 ( 2 π σ 2 ) D / 2 e x p − ∣ ∣ x − y m ∣ ∣ 2 2 2 σ 2 \begin{aligned} p(\bold x) &= \sum_{m=1}^{M}P(m)p(\bold x|m) \\ p(\bold x|m) &= \frac{1}{(2\pi \sigma ^2)^{D/2}}exp^{-\frac{||x-y_m||_2^2}{2\sigma^2}} \end{aligned} p(x)p(xm)=m=1MP(m)p(xm)=(2πσ2)D/21exp2σ2xym22

考虑到数据中存在噪音或者冗余点或异常值,即 N ≠ M N \neq M N̸=M, 此时,可以引入一个额外的均匀分布:
p ( x ∣ M + 1 ) = 1 N p(\bold x | M+1) = \frac{1}{N} p(xM+1)=N1
结合两种概率分布,使用一个参数 ω \omega ω对两种分布进行加权后的完整概率密度函数为:
p ( x ) = ∑ m = 1 M + 1 P ( m ) p ( x ∣ m ) = ω 1 N + ( 1 − ω ) 1 M p ( x ∣ m ) p(\bold x) = \sum_{m=1}^{M+1}P(m)p(\bold x|m) = \omega \frac{1}{N} + (1 - \omega) \frac{1}{M}p(\bold x | m) p(x)=m=1M+1P(m)p(xm)=ωN1+(1ω)M1p(xm)

假定每个数据点都独立同分布,此时似然函数可以写作:
L ( θ , σ 2 ) = ∏ i = 1 N p ( x i ) = ∏ i = 1 N ∑ m = 1 M + 1 P ( m ) p ( x i ∣ m ) ℓ ( θ , σ 2 ) = log ⁡ ∏ i = 1 N p ( x i ) = log ⁡ ∏ i = 1 N ∑ m = 1 M + 1 P ( m ) p ( x i ∣ m ) = ∑ i = 1 N log ⁡ ∑ m = 1 M + 1 P ( m ) p ( x i ∣ m ) \begin{aligned} L(\theta, \sigma^2) &= \prod_{i=1}^{N}p(x_i) = \prod_{i=1}^{N} \sum_{m=1}^{M+1}P(m)p(x_i|m)\\ \ell (\theta, \sigma^2) &= \log \prod_{i=1}^{N}p(x_i) \\ &=\log \prod_{i=1}^{N} \sum_{m=1}^{M+1}P(m)p(x_i|m) \\ &=\sum_{i=1}^{N}\log \sum_{m=1}^{M+1}P(m)p(x_i|m) \end{aligned} L(θ,σ2)(θ,σ2)=i=1Np(xi)=i=1Nm=1M+1P(m)p(xim)=logi=1Np(xi)=logi=1Nm=1M+1P(m)p(xim)=i=1Nlogm=1M+1P(m)p(xim)
通过最大化这个似然函数就可以得到我们所需要的参数 ( θ , σ 2 ) (\theta, \sigma^2) (θ,σ2)。我们通常意义上求解最大似然函数的方法是通过对似然函数取对数后求导,令导数为0构建方程组来得到我们所需要的参数。然而,在这里由于式子比较复杂,利用上述方法来做求解参数会比较麻烦,因此可以使用EM算法来求解。

EM算法解GMM
如果使用后验概率来表示点集 X \bold X X和点集 Y \bold Y Y中点的对应关系,则有:
P ( m ∣ x n ) = P ( m ) p ( x n ∣ m ) P ( x n ) P(m\mid x_n) = \frac{P(m)p(x_n\mid m)}{P(x_n)} P(mxn)=P(xn)P(m)p(xnm)
根据EM算法中的E步,写出Q函数:
Q = ∑ n = 1 N ∑ m = 1 M + 1 P o l d ( m ∣ x n ) log ⁡ ( P n e w ( m ) p n e w ( x n ∣ m ) ) P o l d ( m ∣ x n ) = e x p − 1 2 ∣ ∣ x n − τ ( y m , θ o l d ) σ o l d ∣ ∣ 2 ∑ k = 1 M e x p − 1 2 ∣ ∣ x n − τ ( y m , θ o l d ) σ o l d ∣ ∣ 2 + c c = ( 2 π σ 2 ) D / 2 ω 1 − ω M N \begin{aligned} Q&= \sum_{n=1}^{N}\sum_{m=1}^{M+1}P^{old}(m\mid x_n)\log(P^{new}(m)p^{new}(x_n\mid m)) \\ P^{old}(m\mid x_n) &= \frac{exp^{-\frac{1}{2}||\frac{x_n - \tau(y_m, \theta^{old})}{\sigma^{old}}||^2}}{\sum_{k=1}^{M}exp^{-\frac{1}{2}||\frac{x_n - \tau(y_m, \theta^{old})}{\sigma^{old}}||^2}+c}\\ c&=(2\pi\sigma^2)^{D/2}\frac{\omega}{1-\omega}\frac{M}{N} \end{aligned} QPold(mxn)c=n=1Nm=1M+1Pold(mxn)log(Pnew(m)pnew(xnm))=k=1Mexp21σoldxnτ(ym,θold)2+cexp21σoldxnτ(ym,θold)2=(2πσ2)D/21ωωNM
上述Q函数的推出过程:Q函数的定义可以参看 [3] 期望极大算法中函数的定义:
Q ( θ , θ ( i ) ) = E Z [ log ⁡ P ( Y , Z ∣ θ ) ∣ Y , θ ( i ) ] = ∑ Z log ⁡ P ( Y , Z ∣ θ ) P ( Z ∣ Y , θ ( i ) ) Q(\theta,\theta^{(i)}) = E_Z[\log P(Y,Z\mid \theta) \mid Y,\theta^{(i)}] = \underset {Z}{\sum} \log P(Y,Z\mid \theta)P(Z\mid Y,\theta^{(i)}) Q(θ,θ(i))=EZ[logP(Y,Zθ)Y,θ(i)]=ZlogP(Y,Zθ)P(ZY,θ(i))
该定义式是在已知参数 θ ( i ) \theta^{(i)} θ(i)的情况下,对隐藏随机变量 Z Z Z求期望值, 其中的 P ( Y , Z ∣ θ ) P(Y,Z|\theta) P(Y,Zθ)对应此处的 p ( x ) p(\bold x) p(x), P ( Z ∣ Y , θ ( i ) ) P(Z\mid Y,\theta^{(i)}) P(ZY,θ(i))对应着后验概率 P ( m ∣ x ) P(m|x) P(mx)。其实,根据Jesson不等式可知,Q函数是对数似然函数 ℓ \ell 的下界。因此,通过最大化这个下界,最终等同于最大化似然函数。

对Q函数进行化简,去除和参数 ( θ , σ 2 ) (\theta, \sigma^2) (θ,σ2)无关的常数,可得:
Q ( θ , σ 2 ) = ∑ n = 1 N ∑ m = 1 M + 1 P o l d ( m ∣ x n ) log ⁡ ( P n e w ( m ) p n e w ( x n ∣ m ) ) = ∑ n = 1 N ( ∑ m = 1 M P o l d ( m ∣ x n ) ⋅ log ⁡ ( ( 1 − ω ) 1 M 1 ( 2 π σ 2 ) ( D / 2 ) exp ⁡ ( − ∣ ∣ x n − τ ( y m , θ ) ∣ ∣ 2 2 σ 2 ) + p o l d ( M + 1 ∣ x n ) ⋅ ω 1 N ) ≈ ∑ n = 1 N ∑ m = 1 M P o l d ( m ∣ x n ) ⋅ log ⁡ ( ( 1 − ω ) 1 M 1 ( 2 π σ 2 ) ( D / 2 ) exp ⁡ ( − ∣ ∣ x n − τ ( y m , θ ) ∣ ∣ 2 2 σ 2 ) ≈ ∑ n = 1 N ∑ m = 1 M P o l d ( m ∣ x n ) ⋅ log ⁡ ( 1 ( σ 2 ) ( D / 2 ) exp ⁡ ( − ∣ ∣ x n − τ ( y m , θ ) ∣ ∣ 2 2 σ 2 ) = − ∑ n = 1 N ∑ m = 1 M P o l d ( m ∣ x n ) ⋅ log ⁡ [ ( σ 2 ) ( D / 2 ) exp ⁡ ( ∣ ∣ x n − τ ( y m , θ ) ∣ ∣ 2 2 σ 2 ) ] = − ∑ n = 1 N ∑ m = 1 M P o l d ( m ∣ x n ) ⋅ [ log ⁡ ( σ 2 ) ( D / 2 ) + log ⁡ exp ⁡ ( ∣ ∣ x n − τ ( y m , θ ) ∣ ∣ 2 2 σ 2 ) ] = − ∑ n = 1 N ∑ m = 1 M P o l d ( m ∣ x n ) ⋅ [ log ⁡ σ 2 + log ⁡ ( exp ⁡ ( ∣ ∣ x n − τ ( y m , θ ) ∣ ∣ 2 2 σ 2 ) ] = − ( ∑ n = 1 N ∑ m = 1 M P o l d ( m ∣ x n ) ⋅ log ⁡ σ 2 + 1 2 σ 2 ∑ n = 1 N ∑ m = 1 M ∣ ∣ x n − τ ( y m , θ ) ∣ ∣ 2 ) \begin{aligned} Q(\theta, \sigma^2) &= \sum_{n=1}^{N}\sum_{m=1}^{M+1}P^{old}(m\mid x_n)\log(P^{new}(m)p^{new}(x_n\mid m)) \\ &= \sum_{n=1}^{N}(\sum_{m=1}^{M}P^{old}(m\mid x_n)\cdot\log({(1-\omega)}\frac{1}{M}\frac{1}{(2\pi\sigma^2)^{(D/2)}}\exp(-\frac{||x_n - \tau(y_m, \theta)||^2}{2\sigma^2})+ p^{old}(M+1|x_n)\cdot \omega\frac{1}{N})\\ &\approx\sum_{n=1}^{N}\sum_{m=1}^{M}P^{old}(m\mid x_n)\cdot\log({(1-\omega)}\frac{1}{M}\frac{1}{(2\pi\sigma^2)^{(D/2)}}\exp(-\frac{||x_n - \tau(y_m, \theta)||^2}{2\sigma^2})\\ &\approx\sum_{n=1}^{N}\sum_{m=1}^{M}P^{old}(m\mid x_n)\cdot\log(\frac{1}{(\sigma^2)^{(D/2)}}\exp(-\frac{||x_n - \tau(y_m, \theta)||^2}{2\sigma^2})\\ &= -\sum_{n=1}^{N}\sum_{m=1}^{M}P^{old}(m\mid x_n)\cdot\log[{(\sigma^2)^{(D/2)}}\exp(\frac{||x_n - \tau(y_m, \theta)||^2}{2\sigma^2})]\\ &= -\sum_{n=1}^{N}\sum_{m=1}^{M}P^{old}(m\mid x_n)\cdot[\log{(\sigma^2)^{(D/2)}}+ \log\exp(\frac{||x_n - \tau(y_m, \theta)||^2}{2\sigma^2})]\\ &= -\sum_{n=1}^{N}\sum_{m=1}^{M}P^{old}(m\mid x_n)\cdot[\log{\sigma^2}+ \log(\exp(\frac{||x_n - \tau(y_m, \theta)||^2}{2\sigma^2})]\\ &= -\Big(\sum_{n=1}^{N}\sum_{m=1}^{M}P^{old}(m\mid x_n)\cdot\log{\sigma^2}+\frac{1}{2\sigma^2}\sum_{n=1}^{N}\sum_{m=1}^{M} {||x_n - \tau(y_m, \theta)||^2}\Big)\\ \end{aligned} Q(θ,σ2)=n=1Nm=1M+1Pold(mxn)log(Pnew(m)pnew(xnm))=n=1N(m=1MPold(mxn)log((1ω)M1(2πσ2)(D/2)1exp(2σ2xnτ(ym,θ)2)+pold(M+1xn)ωN1)n=1Nm=1MPold(mxn)log((1ω)M1(2πσ2)(D/2)1exp(2σ2xnτ(ym,θ)2)n=1Nm=1MPold(mxn)log((σ2)(D/2)1exp(2σ2xnτ(ym,θ)2)=n=1Nm=1MPold(mxn)log[(σ2)(D/2)exp(2σ2xnτ(ym,θ)2)]=n=1Nm=1MPold(mxn)[log(σ2)(D/2)+logexp(2σ2xnτ(ym,θ)2)]=n=1Nm=1MPold(mxn)[logσ2+log(exp(2σ2xnτ(ym,θ)2)]=(n=1Nm=1MPold(mxn)logσ2+2σ21n=1Nm=1Mxnτ(ym,θ)2)

其中,对于GMM中的各个高斯分模型:
P o l d ( m ∣ x n ) = ( 1 − ω ) 1 M 1 ( 2 π σ 2 ) ( D / 2 ) exp ⁡ ( − 1 2 ∣ ∣ x n − τ ( y m , θ o l d ) σ o l d ∣ ∣ 2 ) ∑ k = 1 M ( 1 − ω ) 1 M 1 ( 2 π σ 2 ) ( D / 2 ) exp ⁡ ( − 1 2 ∣ ∣ x n − τ ( y k , θ o l d ) σ o l d ∣ ∣ 2 ) + ω 1 N = exp ⁡ ( − 1 2 ∣ ∣ x n − τ ( y m , θ o l d ) σ o l d ∣ ∣ 2 ) ∑ k = 1 M exp ⁡ ( − 1 2 ∣ ∣ x n − τ ( y k , θ o l d ) σ o l d ∣ ∣ 2 ) + ( 2 π ( σ o l d ) 2 ) D / 2 ω 1 − ω M N \begin{aligned} P^{old}(m\mid x_n) &= \frac{{(1-\omega)}\frac{1}{M}\frac{1}{(2\pi\sigma^2)^{(D/2)}}\exp(-\frac{1}{2}\big |\big|\frac{x_n - \tau(y_m, \theta^{old})}{\sigma^{old}}\big|\big|^2)}{\sum_{k=1}^{M}{(1-\omega)}\frac{1}{M}\frac{1}{(2\pi\sigma^2)^{(D/2)}}\exp(-\frac{1}{2}\big |\big|\frac{x_n - \tau(y_k, \theta^{old})}{\sigma^{old}}\big|\big|^2)+ \omega\frac{1}{N}}\\ &= \frac{\exp(-\frac{1}{2}\big |\big|\frac{x_n - \tau(y_m, \theta^{old})}{\sigma^{old}}\big|\big|^2)}{\sum_{k=1}^{M}\exp(-\frac{1}{2}\big |\big|\frac{x_n - \tau(y_k, \theta^{old})}{\sigma^{old}}\big|\big|^2)+ (2\pi(\sigma^{old})^2)^{D/2}\frac{\omega}{1-\omega}\frac{M}{N}}\\ \end{aligned} Pold(mxn)=k=1M(1ω)M1(2πσ2)(D/2)1exp(21σoldxnτ(yk,θold)2)+ωN1(1ω)M1(2πσ2)(D/2)1exp(21σoldxnτ(ym,θold)2)=k=1Mexp(21σoldxnτ(yk,θold)2)+(2π(σold)2)D/21ωωNMexp(21σoldxnτ(ym,θold)2)


不同的变换 τ ( y , θ ) \tau(y, \theta) τ(y,θ) θ \theta θ参数是不一样的,因此需要分别考虑。

刚性变换
仿射变换
弹性形变

Reference
[1] Point Set Registration: Coherent Point Drift
[2] 混合高斯模型:Gaussian Mixture Model
[3] 期望极大算法:Expectation Maximization Algorithm

  • 20
    点赞
  • 92
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值