光流法:Farnback
现实世界中,万物都在在运动,且运动的速度和方向可能均不同,这就构成了运动场。物体的运动投影在图像上反应的是像素的移动。这种像素的瞬时移动速度就是光流。光流法是利用图像序列中的像素在时间域上的变化、相邻帧之间的相关性来找到的上一帧跟当前帧间存在的对应关系,计算出相邻帧之间物体的运动信息的一种方法。
光流法按照不同的实现方式可以分为:基于梯度的方法、基于匹配的方法、基于能量的方法、基于相位的方法等。本文介绍的是一种基于梯度的经典光流方法:Farnback法。光流法的前提假设包括:相邻帧之间亮度恒定;相邻帧之间取时间连续或者运动变化微小;同一子图像中像素点具有相同的运动。
基本假设
假定图像序列记作
I(x,y,t)
I
(
x
,
y
,
t
)
,其中
X=[x,y]
X
=
[
x
,
y
]
。视频中的每个前后帧提取出来之后就是一个图像序列。假设图像亮度恒定,即图像亮度没有变化,则导数为0:
或者根据泰勒展开来得出上述式子:
其中,在微小时间内 ∂X∂t ∂ X ∂ t 或者 ΔXΔt Δ X Δ t 表示速度,可以记为:
则有:
Farneback光流法
Farneback是一种基于梯度的方法,假设图像梯度恒定且假设局部光流恒定。局部光流恒定,即对于任意的
y∈N(x),d=∂X∂t不变
y
∈
N
(
x
)
,
d
=
∂
X
∂
t
不
变
。梯度恒定即:
假设:
上式在最优值处有导数为0:
若对时间离散化:
(后向差分)
(时间中心差分)
图像模型
图像一般是二维的(灰度图像),那么图像像素点的灰度值可以看成是一个二维变量的函数
f(x,y)
f
(
x
,
y
)
。假设以感兴趣的像素点为中心,构建一个局部坐标系(并不是针对整张图像)。对函数进行二项展开,可以近似为:
其中, x x 为二维列向量, A A 为 2×2 2 × 2 的对称矩阵, b b 为 2×1 2 × 1 的矩阵。注意,此处的系数确定后只针对在确定点 (x,y) ( x , y ) 而言,对于其他点可能并不适用,也就是说,每个像素点对应一组系数。
取该像素点的一个邻域(通常以该像素为中心,大小为 2n+1的方形区域 2 n + 1 的 方 形 区 域 ),利用这些像素点的值和坐标来进行系数的估计,估计的算法可以使用加权最小二乘法。加权是因为在邻域内,距中心越近的像素点与中心像素具有更大的相关性,而越远的点提供的信息越少。其实可以将邻域以外的像素点的权重都看成是0。
位移估计
考虑多项式扩展是在一个像素的邻域内,如果像素经过移动
d
d
后,则整个多项式应该会发生变化。
原始位置:
像素移动后:
其中,
如果 A1 A 1 非奇异,则有上述的第二个式子可以得到:
按照理论推导,其中必定有 A1=A2 A 1 = A 2 ,但实际情况中未必能满足这一项要求,因此可以通过来求平均来近似真实值。如果令:
那么:
可以构建目标函数来进行优化求得位移:
实际情况中,这种方法求得的结果中噪声太多,因此可以使用兴趣像素点的邻域,然后使用加权的目标函数:
Reference
[1] 图像分析之光流之经典
[2] Farneback 光流算法详解与 calcOpticalFlowFarneback 源码分析
[3] 光流Optical Flow介绍与OpenCV的实现
[4] 光流法简单介绍
[5] Farneback, 2003, Two-Frame Motion Estimation Based on Polynomial Expansion