电机控制专题(二)——Sensorless之扩展反电动势EEMF

本文介绍了电机控制中的扩展反电动势(ElectromotiveForce,EEMF)模型,特别关注SPM和IPM的区别。EEMF模型统一了SPM和IPM的无感控制算法,允许在两种电机类型上计算包含转子位置信息的反电动势,进而实现无位置传感器控制。文章详细推导了EEMF的理论,并通过仿真验证了其在IPM电机上的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电机控制专题(二)——Sensorless之扩展反电动势EEMF

前言

总结下电机控制中的扩展反电动势模型。

纯小白,如有不当,轻喷,还请指出。


在得出EEMF(Extended Electromotive Force)之前,有必要先从一个不具有凸机效应的表贴式永磁同步电机Suface Mounted Permanet Machine(SPM)的模型入手。

SPM在两相静止坐标系下的数学模型可表示为
[ v α v β ] = [ R + p L 0 0 R + p L ] [ i α i β ] + ω r e ψ f [ − sin ⁡ θ r e cos ⁡ θ r e ] \begin{bmatrix}v_\alpha\\v_\beta\end{bmatrix}=\begin{bmatrix}R+pL&0\\0&R+pL\end{bmatrix}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}+\omega_{re}\psi_f\begin{bmatrix}-\sin\theta_{re}\\\cos\theta_{re}\end{bmatrix} [vαvβ]=[R+pL00R+pL][iαiβ]+ωreψf[sinθrecosθre](1)

其中 v α β v_{\alpha\beta} vαβ α β \alpha\beta αβ轴电压分量, i α β i_{\alpha\beta} iαβ α β \alpha\beta αβ轴电流分量, R , L , ω r e , ψ f R,L,\omega_{re},\psi_f R,L,ωre,ψf分别为电机的电阻、电感、电角速度和永磁体基波磁链幅值, p p p是微分算子。

式(1)说明,通过测量 v α β v_{\alpha\beta} vαβ i α β i_{\alpha\beta} iαβ,即可算出 α β \alpha\beta αβ轴的反电势,即式(1)等号右边的第二项。而反电势包含有转子位置信息,因此可以通过反正切或者锁相环PLL等算法提取得到电机的电角度和转速,从而实现无位置传感器Sensorless控制。

上述的SPM的基于反电动势的无感控制算法看上去还挺简单的对吧,但当电机是一个具有凸极效应的内置式永磁电机Interior Permanent Machine(IPM)的时候,情况又是怎样的呢?

IPM在两相静止坐标系下的数学模型如下:
[ v α v β ] = [ R + p L α p L α β p L α β R + p L β ] [ i α i β ] + ω r e ψ f [ − sin ⁡ θ r e cos ⁡ θ r e ] \begin{bmatrix}v_\alpha\\v_\beta\end{bmatrix}=\begin{bmatrix}R+pL_\alpha&pL_{\alpha\beta}\\pL_{\alpha\beta}&R+pL_\beta\end{bmatrix}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}+\omega_{re}\psi_f\begin{bmatrix}-\sin\theta_{re}\\\cos\theta_{re}\end{bmatrix} [vαvβ]=[R+pLαpLαβpLαβR+pLβ][iαiβ]+ωreψf[sinθrecosθre](2)
                                                 L α = L 0 + L 1 cos ⁡ 2 θ r e L β = L 0 − L 1 cos ⁡ 2 θ r e L α β = L 1 sin ⁡ 2 θ r e L 0 = ( L d + L q ) 2 L 1 = ( L d − L q ) 2 . \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\begin{aligned} L_{\alpha}=& L_0+L_1\cos2\theta_{re} \\ L_{\beta}=& L_0-L_1\cos2\theta_{re} \\ L_{\alpha\beta}=& L_1\sin2\theta_{re} \\ L_0=& \begin{aligned}\frac{(L_d+L_q)}{2}\end{aligned} \\ L_{1}=& \begin{aligned}\frac{(L_d-L_q)}{2}.\end{aligned} \end{aligned} Lα=Lβ=Lαβ=L0=L1=L0+L1cos2θreL0L1cos2θreL1sin2θre2(Ld+Lq)2(LdLq).
其中 L d , L q L_d,L_q Ld,Lq为dq轴电感, θ r e \theta_{re} θre是电角度。

式(2)说明,当电机是一个IPM时,转子位置信息不仅位于反电动势中,还耦合在电感矩阵中,但由于转子位置位置,因此电感矩阵也是未知的,不能算出正确的反电动势。

到这里读者应该可以发现了,同样都出于计算电机反电动势来实现无感控制的目的,但却只适用于SPM,那未免也太鸡肋了。所以EEMF概念的提出就是为了将SPM和IPM的基于反电动势无感算法统一起来,在这个EEMF模型下,对SPM和IPM都适用,是一个通用的交流电机无感控制算法。

理论推导

IPM在dq坐标系下的数学模型为
[ v d v q ] = [ R + p L d − ω r e L q ω r e L d R + p L q ] [ i d i q ] + [ 0 ω r e ψ f ] \begin{bmatrix}v_d\\v_q\end{bmatrix}=\begin{bmatrix}R+pL_d&-\omega_{re}L_q\\\omega_{re}L_d&R+pL_q\end{bmatrix}\begin{bmatrix}i_d\\i_q\end{bmatrix}+\begin{bmatrix}0\\\omega_{re}\psi_f\end{bmatrix} [vdvq]=[R+pLdωreLdωreLqR+pLq][idiq]+[0ωreψf](3)

重写式(3)中的电感矩阵和旋转反电势项,得到
[ v α v β ] = [ R + p L d ω r e ( L d − L q ) − ω r e ( L d − L q ) R + p L d ] [ i α i β ] + { ( L d − L q ) ( ω r e i d − i q ) + ω r e ψ f } [ − sin ⁡ θ r e cos ⁡ θ r e ] \begin{bmatrix}v_\alpha\\v_\beta\end{bmatrix}=\begin{bmatrix}R+pL_d&\omega_{re}(L_d-L_q)\\-\omega_{re}(L_d-L_q)&R+pL_d\end{bmatrix}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\+\big\{(L_d-L_q)(\omega_{re}i_d-i_q)+\omega_{re}\psi_f\big\}\left[\begin{array}{c}-\sin\theta_{re}\\\cos\theta_{re}\end{array}\right] [vαvβ]=[R+pLdωre(LdLq)ωre(LdLq)R+pLd][iαiβ]+{(LdLq)(ωreidiq)+ωreψf}[sinθrecosθre](4)

对式(4)进行反Park变化,得到两相静止坐标系下的数学模型
[ v α v β ] = [ R + p L d ω r e ( L d − L q ) − ω r e ( L d − L q ) R + p L d ] [ i α i β ] + { ( L d − L q ) ( ω r e i d − i ˙ q ) + ω r e ψ f } [ − sin ⁡ θ r e cos ⁡ θ r e ] \begin{bmatrix}v_\alpha\\v_\beta\end{bmatrix}=\begin{bmatrix}R+pL_d&\omega_{re}(L_d-L_q)\\-\omega_{re}(L_d-L_q)&R+pL_d\end{bmatrix}\begin{bmatrix}i_\alpha\\i_\beta\end{bmatrix}\\+\{(L_d-L_q)(\omega_{re}i_d-\dot{i}_q)+\omega_{re}\psi_f\}\begin{bmatrix}-\sin\theta_{re}\\\cos\theta_{re}\end{bmatrix} [vαvβ]=[R+pLdωre(LdLq)ωre(LdLq)R+pLd][iαiβ]+{(LdLq)(ωreidi˙q)+ωreψf}[sinθrecosθre](5)
其中等式右侧的第二项即为扩展反电动势EEMF,可以看出,当 L d = L q L_d=L_q Ld=Lq,EEMF即SPM的反电动势,因此EEMF是交流电机反电动势的统一的表达式。

式(5)表明,经过等价变化以后,电感矩阵不在包含于转子位置信息,转子位置只包含在EEMF中。但代价是对角元出现了与转速相关的反电动势项,仍然也是未知的。但相较于式(2),包含未知项的只有非对角元素了,本质上对模型也是有一定程度的简化。

因此通过式(5)计算得到EEMF,并设计合理的观测器PLL,估算电机的转速和角度,再反馈到式(5)中电感矩阵的非对角元素,即可使得最终估算的转速和角度收敛到真实值。

仿真验证

基于上述的EEMF模型,对一台IPM电机进行无感控制,相应的仿真参数设置如下

参数
L d L_d Ld1.2mH
L q L_q Lq2.4mH
ψ f \psi_f ψf0.14Wb
U d c U_{dc} Udc200V

由于反电动势与转速成正比,低转速情况下的反电动势,计算得到的反电动势误差较大,因此需要将电机开环拖动至较高转速,至转速及角度收敛以后再切入转速闭环。

设置电机空载启动0.12s后,切入闭环控制,控制转速为2000rpm,0.2s加载至5N·m,0.3s加速至3000rpm,仿真总时长0.4s。相应的仿真结果如下图所示。
在这里插入图片描述
在这里插入图片描述
仿真结果表明,应用EEMF能够对一台IPM实现转子速度及位置的估算。

总结

EEMF是IPM,以及SPM的反电动势的统一模型。不论是IPM还是SPM,都可以计算出含转子位置信息的EEMF,从而结合观测器提取转子转速以及转子角,实现无位置控制。

参考文献

[1] Chen Z, Tomita M, Doki S, et al. An extended electromotive force model for sensorless control of interior permanent-magnet synchronous motors[J/OL]. IEEE Transactions on Industrial Electronics, 2003, 50(2): 288-295.

此设计是使用 DRV10987 无传感器BLDC正弦波马达驱动器应用于家用立扇方案 ; 节约能源一直是至高无上的话题,将传统马达替换成直流无刷马达就是节能最佳选择,能耗可降低40%~60%左右 ; 因立扇市场普遍要求起动时不能反转,所以现行设计均需加入三个Hall传感器在三个需要侦测马达换相位置的地方,这样的设计让PCB材积无法再缩小且得紧邻马达转子的位置 ; 若是采用BLDC Sensorless马达驱动器方案,要做到起动不反转门坎极高,非常难达成 ; 而TI新推出的DRV10987无传感器马达驱动器内建功能强大的起动位置侦测功能,能让用户很轻易的完成起动不反转行为,采用DRV10987的方案来驱动立扇因少了Hall传感器,就可任意的摆放PCB位置可跳脱紧邻马达转子的位置,也可依需求缩小PCB材积可避免因使用三个Hall传感器且传感器之间要有一定的间距要求而限制了PCB的位置跟材积。 核心技术优势 1.汽车三相无刷直流电动机驱动器 •1级合格:-40至125°C操作 •工作电压:6.2至28V •负载突降电压:最高45V •逻辑操作:低至4.5V •输出电流:2A连续/ 3A峰值 •无正弦波传感器控制 2.高度可配置用于加速和输出PWM 3.模拟,PWM和I2C控制接口选项 4. 5V / 100mA降压稳压器和3.3V / 20mA LDO片内 5.低功耗模式:48uA睡眠,8.5mA待机 6. FG输出提供TACH反馈 7.全套保护和诊断 方案规格 1.汽车合格 •支持启停和甩负荷 2.高度集成 •集成了VREG,控制,栅极驱动和FET •无霍尔传感器或感应电阻器/ BOM最少 3.超静音高效 •正弦控制可安静地驱动各种电机 •低睡眠电流可延长电池寿命 4.无代码调优 •调谐电机,可实现可靠的启动,最佳效率和最小的输出 方案来源于大大通
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

今天美美吃饭啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值