数据预处理中Decode使用的疑问

本文探讨在数据预处理过程中遇到的PIL库读取图片与Decode组件的兼容性问题。通过源代码分析,指出在使用PIL读取图片后,可能由于格式转换不当导致错误。解决方案是将读取的PIL图像转换为numpy数组以满足Decode的输入要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

源代码:

import os
from mindspore.dataset import GeneratorDataset
import pandas as pd
from PIL import Image
import mindspore.dataset.vision.py_transforms as py_vision
from mindspore.dataset.transforms.py_transforms import Compose





class EyeLandmarksDataset(GeneratorDataset):

    def __init__(self, excel_file, root_dir, transform=None):
        self.landmarks_frame = pd.read_excel(excel_file)
        self.root_dir = root_dir
        self.transform = transform

    def __len__(self):
        return len(self.landmarks_frame)

    def __getitem__(self, idx):
        img_name = os.path.join(self.root_dir,
                                self.landmarks_frame.iloc[idx,3])
        image = Image.open(img_name)
        if self.transform:
            image = self.transform(image)
        landmarks = self.landmarks_frame.iloc[idx,7:].values   #values函数将表格型数据结构转换成数组
        landmarks = landmarks.astype('float').
<think>好的,我需要帮助用户了解如何下载模型并进行数据训练。用户之前已经询问过关于DeepSeek-MoE-16B的显存问题,现在他们可能想进一步实际操作,开始训练自己的模型。首先,我需要明确他们的需求:下载模型和进行数据训练。可能他们不太清楚具体的步骤,或者遇到了一些困难。 首先,下载模型通常涉及从Hugging Face这样的平台获取模型文件。我需要介绍如何用Hugging Face的transformers库下载模型,并提到可能需要登录和同意许可协议的情况。用户可能需要知道不同的下载方式,比如使用git-lfs或者直接使用库函数。 接下来是数据准备。用户可能需要了解数据格式的要求,比如JSON、CSV或文本文件。预处理步骤也很重要,比如清洗数据、分词和划分数据集。需要提醒用户注意数据质量和格式是否符合模型的要求。 然后是训练部分,用户之前提到了QLoRA微调,所以这里需要详细说明如何使用Peft库进行参数高效微调。需要解释LoRA的配置参数,比如r、alpha和dropout,以及如何将这些配置应用到模型上。训练参数的设置也很关键,比如学习率、批次大小、训练轮次等,特别是如何在显存有限的情况下调整这些参数以避免OOM错误。 用户显存可能有限,所以需要再次强调显存优化的技术,比如梯度检查点、混合精度训练和优化器选择。还要提到监控显存使用情况的方法,比如使用nvidia-smi或日志记录。 最后,验证和推理部分需要简洁,说明如何加载微调后的模型并进行测试。要提醒用户保存检查点和处理可能出现的错误,比如显存不足或数据格式问题。 需要注意用户可能的疑问点,比如如何选择合适的数据集,调整超参数的策略,以及如何处理训练过程中的常见问题。需要确保步骤清晰,代码示例准确,并且提供足够的解释帮助用户理解每个步骤的作用。同时,要避免使用过于专业的术语,保持解释的易懂性,特别是在处理显存优化和参数配置时,可能需要用更直白的语言说明其影响。</think>以下是使用中文对 **下载模型并进行数据训练** 的分步指南: --- ### **一、下载模型** #### **1. 从Hugging Face获取模型** - **直接下载**(适合小模型): ```python from transformers import AutoModel, AutoTokenizer model_name = "deepseek-ai/deepseek-moe-16b-chat" # 替换为实际模型名称 model = AutoModel.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) ``` - **使用Git-LFS**(推荐大模型): ```bash git lfs install git clone https://huggingface.co/deepseek-ai/deepseek-moe-16b-chat ``` #### **2. 注意事项** - **权限申请**:部分模型需在Hugging Face官网申请访问权限(如填写使用协议) - **量化加载**(显存不足时): ```python model = AutoModel.from_pretrained( model_name, load_in_4bit=True, # 4-bit量化 device_map="auto", # 自动分配GPU/CPU torch_dtype=torch.float16 # 混合精度 ) ``` --- ### **二、准备训练数据** #### **1. 数据格式要求** | 格式类型 | 示例结构 | 适用场景 | |--------------|-----------------------------------|------------------| | **JSON** | `{"text": "..."}` 或 `{"question": "...", "answer": "..."}` | 通用任务 | | **CSV** | `prompt,response` 列 | 问答/对话 | | **纯文本** | 每行一段完整文本 | 预训练/续写 | #### **2. 数据预处理** ```python from datasets import load_dataset # 加载本地数据 dataset = load_dataset("json", data_files="your_data.json") # 数据清洗函数示例 def clean_text(example): example["text"] = example["text"].strip().replace("\n", " ") return example dataset = dataset.map(clean_text) # 划分训练集/验证集 dataset = dataset["train"].train_test_split(test_size=0.1) ``` #### **3. 数据Tokenization** ```python def tokenize_function(examples): return tokenizer( examples["text"], truncation=True, max_length=512, # 根据GPU显存调整 padding="max_length" ) tokenized_dataset = dataset.map(tokenize_function, batched=True) ``` --- ### **三、执行训练** #### **1. 基础训练配置** ```python from transformers import TrainingArguments, Trainer training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=2, # 8GB显存建议设为1-2 per_device_eval_batch_size=1, num_train_epochs=3, # 根据数据量调整(小数据可设5-10) learning_rate=2e-5, # 推荐范围:1e-5 ~ 5e-5 fp16=True, # 启用混合精度(NVIDIA GPU必需) gradient_accumulation_steps=4, # 模拟更大batch_size logging_steps=50, evaluation_strategy="steps", eval_steps=200, save_steps=500 ) trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset["train"], eval_dataset=tokenized_dataset["test"] ) ``` #### **2. 使用QLoRA微调** ```python from peft import LoraConfig, get_peft_model # LoRA配置(关键参数调节) peft_config = LoraConfig( r=16, # 秩(Rank),8-64之间调节 lora_alpha=32, # 缩放系数,通常设为2*r target_modules=["q_proj", "v_proj"], # 选择注意力层的参数 lora_dropout=0.05, # 防止过拟合 bias="none", # 不训练偏置项 task_type="CAUSAL_LM" ) model = get_peft_model(model, peft_config) model.print_trainable_parameters() # 输出可训练参数量(应远小于总参数) ``` #### **3. 启动训练** ```python trainer.train() # 保存最终模型 model.save_pretrained("./fine_tuned_model") ``` --- ### **四、显存优化技巧** | 技术手段 | 实现方法 | 显存节省 | |--| | **梯度检查点** | `TrainingArguments(gradient_checkpointing=True)` | 30%-40% | | **8-bit优化器** | `optim="adamw_8bit"` | 50% | | **CPU Offloading** | `TrainingArguments(device_map="auto", offload_folder="offload")` | 50%+ | | **混合精度训练** | `fp16=True` 或 `bf16=True`(需Ampere架构) | 20%-30% | --- ### **五、验证与推理** #### **1. 加载微调后的模型** ```python from peft import PeftModel model = AutoModelForCausalLM.from_pretrained("deepseek-ai/deepseek-moe-16b-chat") model = PeftModel.from_pretrained(model, "./fine_tuned_model") ``` #### **2. 生成文本** ```python input_text = "如何做红烧肉?" inputs = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate( inputs.input_ids, max_new_tokens=200, temperature=0.7, # 控制随机性(0~1,越大越多样) top_p=0.9, # 核采样阈值 repetition_penalty=1.2 # 抑制重复 ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ### **六、常见问题解决** 1. **OOM(显存不足)错误** - 降低`per_device_train_batch_size` - 增加`gradient_accumulation_steps` - 启用`gradient_checkpointing=True` 2. **训练Loss震荡** - 降低学习率(尝试`1e-5`) - 增加`warmup_steps`(如设为总step的10%) 3. **生成结果不连贯** - 调整生成参数:`temperature`调低(如0.3)、`top_p`调低(如0.7) - 检查训练数据质量(是否包含噪声或错误标注) --- 通过以上步骤,您可以在消费级GPU上完成从模型下载到定制化训练的全流程。如果需要更详细的参数调优指导,建议参考Hugging Face官方文档或模型发布页面的技术报告。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值