CNN与RNN结合建立模型

该博客探讨了一个使用机器学习和深度学习对K个一维心跳数据进行分类的课题。文中分析了每个心跳数据的空间特征(适合CNN)和时间特征(适合RNN),并提出疑问是否可以将两者结合使用。作者详细解答了如何结合CNN和RNN,并分享了解决方案。
摘要由CSDN通过智能技术生成


前言

最近在研究一个课题,在建模部分遇到了一些问题。下面是关于解决问题后的一些想法。


一、课题描述

课题给了K个心跳数据,数据是一维的,要求使用机器学习和深度学习对其进行分类。每个心跳数据作图如下(😏)。
在这里插入图片描述

二、课题分析

每个心跳数据的特征都包括空间特征和时间特征。空间特征有卷积神经网络(CNN),时间特征有循环神经网络(RNN)。但是两者是不是可以结合使用?如果可以结合使用,咋样结合呢?本文对以上两个问题做出详尽地解答。

三、问题解决方法

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值