如何理解泊松分布(Poisson Distribution)

本文深入浅出地介绍了泊松分布的基本概念,包括其概率质量函数、分布律的证明,以及泊松定理的推导过程。通过例题演示了如何将二项分布近似为泊松分布,并展示了泊松分布在实际问题中的应用场景,如印刷错误数和交通事故次数。
摘要由CSDN通过智能技术生成

本文将介绍泊松分布的基本概念、推导、应用,以及泊松定理,附有几道练习题,希望帮助大家掌握泊松分布

泊松分布(Poisson Distribution)

【泊松分布是以其发表者Poisson命名的】
随机变量X服从参数为λ的泊松分布,记作
X ∼ π ( λ ) X\sim\pi(\lambda) Xπ(λ)
分布律
P { X = k } = λ k e − λ k ! , k = 0 , 1 , 2 , … P\{X=k\}=\frac{\lambda^k e^{-\lambda}}{k!}, k=0,1,2,… P{X=k}=k!λkeλ,k=0,1,2,
其中λ>0
注意k取值哟,k是从0到∞!!

证明分布律

对于上式,我们需要证明其满足分布律的条件,即各值概率求和为1, 即: ∑ k = 0 ∞ P { X = k } = 1 \sum_{k=0}^{\infty}P\{X=k\}=1 k=0P{X=k}=1
证明如下:
∑ k = 0 ∞ P { X = k } = ∑ k = 0 ∞ λ k e − λ k ! = e − λ ∑ k = 0 ∞ λ k k ! = e − λ × e λ = 1 \sum_{k=0}^{\infty}P\{X=k\}=\sum_{k=0}^{\infty}\frac{\lambda^k e^{-\lambda}}{k!}=e^{-\lambda}\sum_{k=0}^\infty\frac{\lambda^k}{k!}=e^{-\lambda}\times e^{\lambda}=1 k=0P{X=k}=k=0k!λkeλ=eλk=0k!λk=eλ×eλ=1

这个求和用到了函数f(x)=e^x的带有拉格朗日余项的n阶麦克劳林公式
哈哈,其实这里只是推导一下就好,更严谨,以后使用公式时候用不到

泊松定理

这是一种用泊松分布逼近二项分布的定理,可以看作泊松分布分布律从二项分布律的推导,具体内容如下:

n为任意正整数,np=λ,λ>0,对任意非负整数k,都有
lim ⁡ x → ∞ C n k p n k ( 1 − p ) n − k = λ k e − λ k ! \lim_{x \to \infty}C_n^k p_n^k (1-p)^{n-k}=\frac{\lambda^k e^{-\lambda}}{k!} xlimCnkpnk(1p)nk=k!λkeλ
证明思路
让式子只剩下λ,消去n,p
1.消去n:使n趋近于∞
2.消去p:p=λ/n

证明如下:
C n k p n k ( 1 − p ) n − k = n ( n − 1 ) . . . ( n − k + 1 ) k ! ( λ n ) k ( 1 − λ n ) n − k C_n^k p_n^k (1-p)^{n-k}=\frac{n(n-1)...(n-k+1)}{k!}{(\frac \lambda n)}^k (1-\frac \lambda n)^{n-k} Cnkpnk(1p)nk=k!n(n1)...(nk+1)(nλ)k(1nλ)nk
观察右项,尽量配出来

原 式 = λ k k ! [ 1 × ( 1 − 1 n ) × … × ( 1 − k − 1 n ) ] ( 1 − λ n ) n ( 1 − λ n ) − k 原式=\frac {\lambda^k}{k!}[1\times(1-\frac 1n)\times…\times(1-\frac {k-1}n)](1-\frac \lambda n)^n(1-\frac \lambda n)^{-k} =k!λk[1×(1n1)××(1nk1)](1nλ)n(1nλ)k
令n趋近于正无穷,则
[ 1 × ( 1 − 1 n ) × … × ( 1 − k − 1 n ) ] → 1 [1\times(1-\frac 1n)\times…\times(1-\frac {k-1}n)] \to 1 [1×(1n1)××(1nk1)]1
( 1 − λ n ) n → e − λ (1-\frac \lambda n)^n\to e^{-\lambda} (1nλ)neλ
上式为对自然常数e的定义的代换,实质上用到了复合函数的极限运算法则
( 1 − λ n ) − k → 1 (1-\frac \lambda n)^{-k}\to 1 (1nλ)k1
因此,得证
lim ⁡ x → ∞ C n k p n k ( 1 − p ) n − k = λ k e − λ k ! \lim_{x \to \infty}C_n^k p_n^k (1-p)^{n-k}=\frac{\lambda^k e^{-\lambda}}{k!} xlimCnkpnk(1p)nk=k!λkeλ
np=λ,n很大,p很小时,有近似式:
C n k p n k ( 1 − p ) n − k ≈ λ k e − λ k ! C_n^k p_n^k (1-p)^{n-k}\approx \frac{\lambda^k e^{-\lambda}}{k!} Cnkpnk(1p)nkk!λkeλ
即用泊松分布概率值作二项分布概率值的近似
一般来说,n>=20,p<=0.0.5,近似效果不错

λ的意义

从二项分布可知,E(X)=np,而在泊松定理中λ=np,所以λ是否是数学期望呢?
已知一个分布,可以求其数学期望(用定义求),我们求出泊松分布的数学期望,看它是否是我们预测的λ即可。


上文已经提到了,泊松分布k取值是0,1,2…,其实也就是说泊松分布中的随机变量是离散型随机变量(这样才有分布律嘛),因此我们用离散型随机变量的分布律来求其数学期望:
E ( X ) = ∑ k = 0 ∞ k λ k e − λ k ! = λ e − λ ∑ k = 1 ∞ λ k − 1 ( k − 1 ) ! = λ e − λ e λ = λ E(X)=\sum_{k=0}^\infty k \frac{\lambda^k e^{-\lambda}}{k!}=\lambda e^{-\lambda} \sum_{k=1}^\infty \frac {\lambda^{k-1} }{(k-1)!}=\lambda e^{-\lambda} e^\lambda=\lambda E(X)=k=0kk!λkeλ=λeλk=1(k1)!λk1=λeλeλ=λ
注意k是从0开始!求和符号下标的变换要注意!
果真如我们预想一样,λ就是泊松分布的数学期望

应用

上文在介绍泊松定理的时候说到了,n>=20, p<=0.05时用泊松分布概率值近似二项分布概率值效果颇佳。那实际生活中泊松分布有哪些应用呢?

具有泊松分布的随机变量在实际生活中应用是很多的。例如,一本书一页中的印刷错误数、某地区在一天内邮递遗失的信件数、某一医院在一天内的急诊病人数、某一地区一个时间间隔内发生交通事故的次数、在一个时间间隔内某种放射性物质发出的、经过计数器的α粒子数等都服从泊松分布。《概率论与数理统计第四版》P37

我们可以分析几个

  1. 一本书一页中的印刷错误数:
    可以将印刷每一个字看作一个试验,试验结果有两种,即样本空间为{印刷错了,没印刷错},且印刷不同字都是独立重复(也许有人觉得印刷不同字所印刷的内容不同,不算重复,但我们这个试验中不关注印刷内容,只看印刷出错没)的,那么这算n重伯努利试验。
    那么n=一页书印刷字符数,p=印刷错误的概率
    显然,一般情况下,n很大,p很小,故可以看作是泊松分布

2.某一地区一个时间间隔内发生交通事故的次数
可以将一个时间点是否发生交通事故看作一个事件,那么n趋近于无穷,假设这一时间间隔内各个时间点发生交通事故的概率相同且很低,则符合泊松分布

总之,只须判断试验是否为伯努利试验(同样的条件下重复地、相互独立地进行的一种随机试验),试验次数是否很大,p是否很小即可

泊松分布优势: 在使用泊松分布时,不必知道确切的n,p,只须根据实际意义求出λ的值(最大似然估计),就可以确定一个分布
样本均值是λ的最大似然估计量

图片来源:https://i-blog.csdnimg.cn/blog_migrate/f245134f64b8c0e95256f30978ede9c3.png

例题

例题有两类:
第一类:二项分布趋于泊松分布,用泊松分布的概率值作二项分布概率值的近似(当n>=20,p<=0.05时,近似效果颇佳)

例题:[概率论与数理统计P38 例5] 计算机硬件公司制造某种特殊型号的微型芯片,次品率达0.1%, 各芯片成为次品相互独立。求在1000只产品中至少有2只次品的概率。以X及产品中的次品数,X~b(1000,0.001)


用二项算,因为独立重复试验,题目也明确说了是服从二项分布。

P{X>=2}=1-P{X=0}-P{X=1}
=1-(0.999)^1000 -C(1000,1)(0.999)^999 (0.001)
≈0.2642411

可以看出因为次品率很低,所以小数计算很麻烦

用泊松定理
λ=1000×0.001=1
P{X>=2}=1-P{X=0}-P{X=1}
=1-e^(-1)-e(-2)
≈0.2642411
可以看出近似效果很好

第二类:需要求出或已知λ确定泊松分布
例题:某人家中在时间间隔t (以h计)内接到电话的次数X服从参数为 2t的泊松分布
(1)若他外出计划用时10min,问其间有电话铃响一次的概率是多少?
(2)若他希望外出时没有电话的概率为0.5,问他外出应控制最长时间为多少?

以X表示此人外出时电话铃响的次数,即X~Poi(2t),X的分布律为
P { X = k } = ( 2 t ) k e − 2 t k ! , k = 0 , 1 , 2... P\{X=k\}=\frac {(2t)^k e^{-2t}} {k!}, k=0,1,2... P{X=k}=k!(2t)ke2t,k=0,1,2...
(1) t=10/60=1/6, X~P(2×(1/6)) 故所求概率为
P{X=1}=1/3×e^(-1/3)=0.2388

(2) 设外出最长时间为 t(小时),因X~Poi(2t), 无电话打进的概率为:
P{X=0}=e^(-2t)
要使得P{X=0}=e^(-2t)>=0.5,求得
t<=0.5×ln 2=0.3466小时

参考资料:《概率论与数理统计 浙大·第四版》

【亲爱的读者们,若写的有不对或者不准确的地方欢迎纠正!!!】

  • 42
    点赞
  • 152
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值