参数和超参数的区别
参数(model parameter):
模型根据数据自动学习得出的变量,应该就是参数。比如,深度学习的权重,偏差等,比如线性回归的系数
超参数(model Hyperparameter):
用于确定模型的参数,超参数不同,模型是不同的,比如假设都是CNN模型,如果层数不同,模型不一样,虽然都是CNN模型。超参数一般根据经验确定。在深度学习中,超参数有:迭代次数,层数,每层神经元的个数等等。
超参数搜索——网格搜索和随机搜索
网格搜索
适用于三四个(或者更少)的超参数,网格搜索的思想非常简单,比如有2个超参数需要去选择,那你就把所有的超参数选择列出来分别做排列组合。针对每组超参数分别建立一个模型,然后选择测试误差最小的那组超参数。就像在沙堆上淘金,把沙堆按比例分成格子,淘了一格再去淘下一格,这是网格搜索。
随机搜索:
当超参数的数量增长时,网格搜索的计算复杂度会呈现指数增长,这时要换用随机搜索。就像在沙堆上淘金,闭上眼睛每次随便选个方向走,每次再随便选个步数,走到这步数就停下来淘一把,这是随机搜索。
参考
1、参数和超参数的区别:https://zhuanlan.zhihu.com/p/48516606
2、关于深度学习中超参数优化方法中的随机搜索和网格搜索的解释?:https://www.zhihu.com/question/57394983/answer/181870510
3.开源内容:https://github.com/datawhalechina/team-learning-data-mining/tree/master/IntegratedLearning
4.论坛地址:http://datawhale.club/t/topic/1574