字符编码ANSI和ASCII区别、Unicode和UTF-8区别

今天看了一个说法,说是入坑windows程序开发,必先掌握文字的编码和字符集知识。本博客就整理下信息存储和字符编码的相关知识。
一.位:
计算机存储信息的最小单位,称之为位(bit),音译比特,二进制的一个“0”或一个“1”叫一位。
二.字节
字节(Byte)是一种计量单位,表示数据量多少,它是计算机信息技术用于计量存储容量的一种计量单位,8个二进制位组成1个字节。在ASCII码中,一个标准英文字母(不分大小写)占一个字节位置,一个标准汉字占二个字节位置。
三.字符
字符是指计算机中使用的文字和符号,比如“1、2、3、A、B、C、~!·#¥%…*()+”等等。
四.ASCII码
先从最简单的ASCII说起吧,这个大家也熟悉:全名是American Standard Code for Information Interchange, 叫做“美国信息交换标准码”。ASCII码中,一个英文字母(不分大小写)占一个字节的空间,一个中文汉字占两个字节的空间。ASCII码是目前最普及的一种字符编码,它扎根于我们的互联网,操作系统,键盘,打印机,文件字体和打印机等。ASCII表如下:

图片来源百度百科
图片来源百度百科

当然,从这个名字美国信息交换标准码来看,ASCII码只适用于美帝,要是用在美帝之外的国家,就不能满足需求了。
ANSI码
ANSI编码是一种对ASCII码的拓展:ANSI编码用0x00~0x7f (即十进制下的0到127)范围的1 个字节来表示 1 个英文字符,超出一个字节的 0x80~0xFFFF 范围来表示其他语言的其他字符。也就是说,ANSI码仅在前128(0-127)个与ASCII码相同,之后的字符全是某个国家语言的所有字符。值得注意的是,两个字节最多可以存储的字符数目是2的16次方,即65536个字符,这对于一个语言的字符来说,绝对够了。还有ANSI编码其实包括很多编码:中国制定了GB2312编码,用来把中文编进去另外,日本把日文编到Shift_JIS里,韩国把韩文编到Euc-kr里,各国有各国的标准。受制于当时的条件,不同语言之间的ANSI码之间不能互相转换,这就会导致在多语言混合的文本中会有乱码。
Unicode编码
为了解决不同国家ANSI编码的冲突问题,Unicode应运而生:如果全世界每一个符号都给予一个独一无二的编码,那么乱码问题就会消失。这就是Unicode,就像它的名字都表示的,这是一种所有符号的编码。
Unicode标准也在不断发展,但最常用的是用两个字节表示一个字符(如果要用到非常偏僻的字符,就需要4个字节)。现代操作系统和大多数编程语言都直接支持Unicode。
但是问题在于,原本可以用一个字节存储的英文字母在Unicode里面必须存两个字节(规则就是在原来英文字母对应ASCII码前面补0),这就产生了浪费。那么有没有一种既能消除乱码,又能避免浪费的编码方式呢?答案就是UTF-8!
UTF-8编码
这是一种变长的编码方式:它可以使用1~4个字节表示一个符号,根据不同的符号而变化字节长度,当字符在ASCII码的范围时,就用一个字节表示,保留了ASCII字符一个字节的编码做为它的一部分,如此一来UTF-8编码也可以是为视为一种对ASCII码的拓展。值得注意的是unicode编码中一个中文字符占2个字节,而UTF-8一个中文字符占3个字节。从unicode到uft-8并不是直接的对应,而是要过一些算法和规则来转换。
在计算机内存中,统一使用Unicode编码,当需要保存到硬盘或者需要传输的时候,就转换为UTF-8编码。
用记事本编辑的时候,从文件读取的UTF-8字符被转换为Unicode字符到内存里,编辑完成后,保存的时候再把Unicode转换为UTF-8保存到文件。

<think>好的,用户现在问的是“比deepseek更好的ai”。首先,我需要明确用户所说的“deepseek”具体指的是哪一个AI产品或公司。因为“DeepSeek”可能指的是深度求索公司,他们专注于AGI的研究,也有自己的AI模型,比如DeepSeek-R1。也有可能是用户拼写错误,或者指的是其他类似名称的产品。所以首先需要确认这一点。 用户可能已经了解过DeepSeek,现在想寻找比它更好的AI,但“更好”的标准是什么?不同场景下对AI的需求不同。比如,有的用户可能更关注模型的通用能力,有的关注特定领域(如编程、数学),有的关注多模态能力,或者响应速度、成本等。所以需要先分析用户的需求点。 接下来,我需要比较目前主流的AI模型,看看哪些在特定方面可能优于DeepSeek。例如,GPT-4在通用任务上表现优异,Claude 3在长文本处理上更强,Gemini 1.5 Pro支持超长上下文,而国内的一些模型如GLM-4、通义千问、Kimi可能在中文处理或特定功能上有优势。此外,开源模型如Llama 3Mistral也可能在某些定制化场景下更好。 用户可能没有明确说明应用场景,所以需要建议根据具体需求选择模型。比如,如果是需要处理超长文本,Kimi可能更适合;如果是编程,GitHub Copilot或ChatGPT更合适。另外,用户可能对成本敏感,这时候可能需要推荐性价比高的模型,或者开源可自行部署的选项。 还要考虑用户是否有技术背景。如果他们有能力自己部署调优模型,开源模型可能更合适;否则,商业化的API或服务更方便。此外,用户可能对数据隐私有要求,这时候需要推荐可以本地部署的模型。 最后,需要提醒用户,AI领域发展迅速,模型的优劣可能随时间变化,建议持续关注最新动态。同时,不同模型的优势领域不同,没有绝对的“更好”,只有更适合的。</think>在AI领域,"更好"的定义取决于具体需求场景(如通用能力、垂直领域表现、成本效益等)。以下从不同维度分析当前(2024年)具有竞争力的AI模型/产品,并附对比建议: --- ### 一、**综合能力领先的通用大模型** #### 1. **GPT-4 & GPT-4o(OpenAI)** - **优势**: - 多模态能力最强(支持文本/语音/视觉交互) - 复杂推理能力突出(如解决包含$$ \sum_{k=1}^n \frac{k^3}{2^k} $$的数学推导) - 知识截止时间更新至2023年10月(比多数模型的2022年更近) - **适用场景**:科研分析、跨领域问题解决、创意生成 #### 2. **Claude 3 Opus(Anthropic)** - **突破点**: - 支持200K tokens超长上下文(相当于15万汉字) - 法律/医疗等专业领域理解更精准 - 根据论文测试,在GSM8K数学基准测试准确率达95.2% --- ### 二、**垂直领域特化模型** #### 1. **GitHub Copilot(代码场景)** - **对比优势**: - 直接集成在VS Code等IDE中 - 支持全栈语言(从Python到Rust) - 根据2024 Stack Overflow调查,开发者使用率高达73% #### 2. **AlphaGeometry(DeepMind)** - **数学能力突破**: - 在IMO级别几何题上达到人类金牌选手水平 - 可自动生成包含$$ \frac{AB}{CD} = \frac{BC}{AD} $$的证明步骤 --- ### 三、**国产自研模型** #### 1. **GLM-4(智谱AI)** - **特点**: - 中文理解能力优于GPT-4(诗词创作/古文翻译) - 支持10万字长文本处理 - 单位token成本比DeepSeek低约30% #### 2. **通义千问2.5(阿里云)** - **行业应用**: - 企业级知识库微调响应速度提升50% - 内置金融/法律等专业模式 #### 3. **Kimi(月之暗面)** - **长文本突破**: - 支持200万字上下文(技术白皮书/长篇小说分析) - 根据输入内容自动生成思维导图 --- ### 四、**开源替代方案** #### 1. **Llama 3(Meta)** - **技术参数**: - 700亿参数版本数学推理能力超过GPT-3.5 - 支持商业免费使用(需自行微调) #### 2. **Mistral 8x22B** - **性价比优势**: - 相同硬件下推理速度比DeepSeek快1.8- 在HuggingFace开源模型排行榜持续前三 --- ### 五、**选择建议** | 需求维度 | 推荐方案 | 关键指标对比 | |------------------|------------------------------|------------------------------| | 多模态交互 | GPT-4o | 支持视频理解/实时语音 | | 中文专业领域 | GLM-4 | 中文NER准确率92.7% | | 企业私有化部署 | 通义千问 | 支持全链路数据隔离 | | 长文本处理 | Kimi | 200万字上下文记忆 | | 数学/逻辑推理 | AlphaGeometry + GPT-4 | IMO级问题解决率85% | | 低成本开发 | Llama 3 70B | 商用授权成本为0 | --- ### 六、**未来趋势观察** 1. **多模态融合**:Google Gemini 1.5 Pro已实现音频/视频/代码多模态统一表示 2. **小型化模型**:Phi-3-mini(微软)仅38亿参数但数学能力超越部分70B模型 3. **具身智能**:Figure 01等机器人正实现大模型与物理世界的直接交互 建议根据具体场景需求组合使用(如用Kimi处理长文档+GPT-4做分析),同时关注AI进化速度,主流模型每3-6个月会有显著能力跃升。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值