Ubuntu18.04:Conda 安装&更新( 建虚拟环境)、VScode 配置安装、Pytorch安装&更新、安装matplotlib

一、Ubuntu18.04  安装conda

  • Anaconda(官网)(所有版本)下载annaconda,并终端cd 到下载目录,执行下列代码安装
$ bash Anaconda0872-Linux-x86_64.sh  
  • 配置环境变量

终端执行以下命令,打开.bashrc文件

sudo gedit ~/.bashrc
然后再文件末尾添加一行文字,然后右上方记得保存:

export PATH="/home/yourpath/anaconda3/bin:$PATH"
最后输入以下命令使配置马上生效:

source ~/.bashrc
 

备注扩展知识:

1. linux下.bashrc文件修改和生效 linux下.bashrc文件修改和生效_和光同尘ss的博客-CSDN博客_bashrc生效

2. Anaconda升级和库的安装、更新

Anaconda升级和库的安装、更新 - 简书

利用conda升级Anaconda及其包 - 知乎

如何更新 Anaconda? - How do I update Anaconda? - 尼贝斯

二、conda 虚拟环境查询

使用conda create命令创建虚拟环境到指定路径,并指定Python版本,同时可以将需要一起安装的包也一起指定。下面创建一个名为tensorflow的虚拟环境,指定使用Python 3.6版本,并在虚拟环境中安装numpy、scipy、matplotlib、jupyter等软件包,命令如下:

conda create -n torch3.6 python=3.6 numpy scipy matplotlib jupyter

注: 有时会出错:CondaValueError: The target prefix is the base prefix. Aborting.  出现这种情况的话,需要将命令改为:conda create –n torch3.7.  然后分别  conda install scipy,  conda install matplotlib, conda install jupyter.

(安装OpenCV,  pip install opencv-python

安装OpenCV4.2.0版本,详细查考ubuntu 安装opencv4.2.0

安装OpenCV3.2.0版本: conda install --channel https://conda.anaconda.org/menpo opencv3       

如果要安装OpenCV2.xx版本,把上述命令末尾的opencv3换成opencv就行了,安装的是OpenCV2.4.11版本。)

其中-n指定虚拟环境的名称
默认安装的路径位于anaconda安装目录下的envs文件夹里面,也可以使用—prefix参数来重新指定虚拟环境路径

如果要创建第二个虚拟环境,只需使用不同的名称即可,如果创建一个名为tensorflow2,指定使用Python 2.7版本,则命令如下:

conda create -n tensorflow2 python=2.7

如果要查看有哪些虚拟环境,则执行以下命令:

conda info -e

如果在创建conda虚拟环境时没有指定python的版本,则默认是使用anaconda安装目录下bin中的python版本。为了实现虚拟环境的隔离,必须指定python版本

重命名虚拟环境

重命名环境

conda 其实没有重命名指令,实现重命名是通过 clone 完成的,分两步:

  • 先 clone 一份 new name 的环境
  • 删除 old name 的环境

比如,想把环境 rcnn 重命名成 tf

第1步

conda create -n tf --clone rcnn

第2步

conda remove -n rcnn --all

三、激活和删除虚拟环境

激活虚拟环境

创建好conda虚拟环境后,在使用之前必须先进行激活。下面激活刚创建的tensorflow虚拟环境,命令如下:

conda activate tensorflow

如果要退出当前的虚拟环境,则执行命令:

conda deactivate

删除虚拟环境:

使用如下命令,即可删除:

conda remove -n your_env_name(虚拟环境名称) --all 

删除虚拟环境中的包:
使用如下命令

conda remove --name $your_env_name  $package_name(包名)

备注: conda常用命令
conda list:查看安装了哪些包。
conda install package_name(包名):安装包
conda env list 或 conda info -e:查看当前存在哪些虚拟环境
conda update conda:检查更新当前conda

四、VS Code 配置 Python 开发环境

1 安装 Python 插件

在不安装插件的情况下,点击 调试 -> 启动调试(快捷键 F5)是没办法运行代码的。会让你选择环境,而你根本就没有环境可选。

在 VS Code 的应用商店(快捷键:Ctrl + Shift + X)里搜索 Python 插件,并安装。

2. 按 Ctrl + Shift + P(或F1),在打开的输入框中输入 Python: Select Interpreter 搜索,选择 Python 解析器。

3.代码补全工具, VS Code 中的代码补全插件是 Visual Studio IntelliCode。同样在 VS Code 的应用商店(快捷键:Ctrl + Shift + X)里搜索安装.

4.代码检查工具, Pylint 是一个 Python 代码检查工具.当你新建 .py 文件,开始写代码的时候,右下角可能会跳出一个待安装信息。

备注:详细请查看 Debugging configurations for Python apps in Visual Studio Code  和 VS Code 配置 Python 开发环境 - 掘金

5. cannot find runtime 'node' in path(运行时找不到node的路径)

在 termial用 node --version.  然后再which node 命令,根据提示安装nodejs.

然后再vscode中查看lauch.json文件,看有没有这个runtimeExecutable这个设置, 没有的话加上, 就可以了,信息如下:

五、Pytorch 安装 及版本更新

(如果电脑有显卡可GPU加速,需要先安装cuda,才能安装GPU版本的pytorch, cuda 安装请详看 Ubuntu 18.04 NVIDIA显卡驱动安装,以及CUDA10.1和cuDNN安装_Andrewlu58的博客-CSDN博客

进入pytorch官网 : PyTorch,信息如下:

复制最后一条命令,运行即可。

更新torch 版本

根据Previous PyTorch Versions | PyTorch,安装对应的torch 和 torchvision

conda install pytorch==1.10.1 torchvision==0.11.2 torchaudio==0.10.1 cudatoolkit=10.2 -c pytorch
##对应timm安装:pip install timm==0.4.12

六、ubuntu下查看CPU/GPU/内存使用率

1. cpu、内存

使用top命令

$ top

有一个更直观的监测工具,叫htop

$ sudo apt-get install htop
$ stop

2. 查看gpu

使用 nvidia-smi 命令

$ nvidia-smi

但是这个命令只能显示一次,如果要实时显示,配合watch命令, 让一秒刷新一次

$ watch -n 1 nvidia-smi

七、不同Python版本之间替换


列出可用的 Python 替代版本

update-alternatives --list python

或者

# update-alternatives --list python
/usr/bin/python2.7
/usr/bin/python3.4

列出的 Python 替代版本中任意切换了:

# update-alternatives --config python

系统中不再需要某个 Python 的替代版本时,可以将其从 update-alternatives 列表中删除掉。例如,将列表中的 python2.7 版本移除掉:

# update-alternatives --remove python /usr/bin/python2.7 update-alternatives: removing manually selected alternative - switching python to auto mode update-alternatives:using/usr/bin/python3.4 to provide /usr/bin/python (python)inauto modeer

八、安装matplotlib

python -m pip install matplotlib

虚拟环境中调用matplotlib的应用如plt.imshow(img),会报如下错误:

原因:虚拟环境中的matplotlib和base环境中的冲突,所以需要在base环境运行程序调用matplotlib. 即使实在虚拟环境中安装matplotlib,其安装目录也是再conda 的lib目录

九、 安装 Miniforge

1. 下载Miniforge:

访问GitHub页面:https//github.com/conda-forge/miniforge  or Releases · conda-forge/miniforge · GitHub

对于Windows,下载Miniforge3-Windows-x86_64.exe。
对于macOS,下载Miniforge3-MacOSX-x86_64.sh。
对于Linux,下载Miniforge3-Linux-x86_64.sh。
启动安装程序:
在Linux上,打开终端,使用bash命令运行下载的.sh脚本,例如:

bash Miniforge3-Linux-x86_64.sh

2. 配置环境

终端执行以下命令,打开.bashrc文件

sudo gedit ~/.bashrc

将anaconda相关信息修改为miniforge3,如将anaconda3改为miniforge3。
然后再文件末尾添加一行文字,然后右上方记得保存:

export PATH="/home/yourpath/miniforge3/bin:$PATH"
最后输入以下命令使配置马上生效:

source ~/.bashrc

然后关闭当前终端,并重新打开一个新的终端;1

检测:

conda init
conda info --envs

之后使用命令类同anaconda3。

### 如何使用 Anaconda虚拟环境 #### 使用 `conda` 命令管理虚拟环境 通过 `conda` 工具,可以轻松创、管理和删除 Python 虚拟环境。以下是关于如何创虚拟环境的具体说明。 #### 更新 Conda 版本 为了确保工具的稳定性,在操作之前议先检查并更新当前的 Conda 版本(通常不推荐频繁更新)。可以通过以下命令完成此操作: ```bash conda update conda ``` #### 查看已有的虚拟环境列表 在执行任何操作前,可以查看当前系统中存在的所有虚拟环境及其路径。这有助于确认目标环境中是否存在冲突或重复项。运行如下命令即可实现该功能: ```bash conda env list ``` 上述命令会显示所有的虚拟环境以及它们对应的存储位置[^1]。 #### 创新的虚拟环境 要新一个特定版本的 Python 虚拟环境,只需提供环境名和所需的 Python 版本号作为参数传递给 `create` 子命令。例如,如果希望构一个名为 “pytorch” 的新环境,并将其配置Python 3.11,则应执行下列语句: ```bash conda create -n pytorch python=3.11 ``` 这里,“-n” 参数指定了即将立的新环境的名字;而紧跟其后的部分定义了所期望使用的 Python 解释器具体版本信息[^2]。 #### 验证环境路径 一旦成功立了某个具体的虚拟工作区之后,可能还需要进一步验证它的实际磁盘定位情况以便于后续开发过程中能够准确无误地引用到它。虽然前面提到过的列举现有环境的方法已经提供了这些数据,但是有时候单独获取某单一实例的信息更加直观明了一些。遗憾的是原文档并未给出确切做法,不过常规情况下可以直接访问 anaconda 安装目录下的相应子文件夹来找到答案。 #### 更改默认Python版本示例 除了上面介绍的标准流程之外,有时也可能需要调整其他方面设置比如改变基础库集合或者自定义更多依赖关系等等。举个例子来说吧,假设现在打算设立另一个叫做 'pytorch1.7' 并且预设好python解释程序处于较旧状态即v3.8上头的话那么就可以按照这种方式来进行处理啦: ```bash conda create --name pytorch1.7 python=3.8 ``` 值得注意的一点就是这里的命名规则完全取决于个人喜好或者是项目需求所以完全可以自由发挥不受限于任何形式约束[^3]。 #### 总结 综上所述,借助强大的Conda包管理系统我们可以非常简便高效地达成隔离不同应用场景之间相互干扰的目的从而极大地方便了日常科研活动当中对于多样性和灵活性的要求。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiangyong58

喝杯茶还能肝到天亮,共同进步

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值