线性代数(二)--有限维向量空间和线性映射

本文深入探讨线性代数中的有限维向量空间和线性映射。介绍了有限维向量空间的结构,核心是线性相关和线性无关的概念,以及如何通过线性无关组来张成向量空间。此外,文章还阐述了线性映射的本质,即从一个向量空间的基映射到另一个向量空间的基,并引出了矩阵的概念,矩阵是描述线性映射的关键工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

上篇文章已经讨论了什么是线性代数,线性代数就是研究有限维向量空间中线性映射的学科。

它由两个部件组成:有限维向量空间和线性映射

本文主要研究有限维向量空间的性质以及线性映射。

 

(一)有限维向量空间

关于有限维向量空间,最核心的观念是“结构”,(私下地认为,一切东西都是有结构的,结构是一切事物内在的一个属性,正如数的概念也是具有结构的,它能分为有理数和无理数等等各个具有不同性质的部件组成,非常的神奇),有限维向量空间同样是具有结构的,简单地说它能由它的少部分元素来描述整体。

我们最终的目的是想说明:一个有限维向量空间的每一个元素v能够由属于这个空间的一组元素(v1,v2,...,v_m) 唯一地表示,即v = a1*v1 + a2*v2+...+ am*v_m, 唯一意味着a1, a2, ..., am是唯一使得上述等式成立的系数。这里会有两个概念出现:线性相关线性无关。 线性相关是指当v=0时,如果使得上述等式成立的(a1, a2,..., am)不唯一,那么就称v1, v2,.., v_m线性相关,否则就称为线性无关。

我们称由a1*v1 + a2*v2+...+ am*v_m构成的集合为(v1, v2,..., v_m)的张成,记为span(v1,v2,...,v_m)。如果一个向量空间V的一组向量(v1,v2,..., v_m)的张成恰好就是V,称(v1,v2,..., v_m)张成向量空间V,同时称这个向量空间是有限维的,如果(v1,v2,..., v_m)是线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值