线性代数(2)- 有限维的向量空间

有限维的向量空间

线性组合

  同一个向量空间 V V V中,有若干个向量 v 1 , … , v m v_1,\dots,v_m v1,,vm,则 a 1 v 1 + … + a m v m a_1v_1+\ldots+a_mv_m a1v1++amvm被称为是它们的线性组合(Linear Combination),其中 a 1 , … , a m ∈ F a_1, \dots, a_m \in F a1,,amF

展开

  同一个向量空间中,若干的向量 v 1 , … , v m v_1,\dots,v_m v1,,vm的展开(Span)
   s p a n ( v 1 , … , v m ) = { a 1 v 1 + … + a m v m ∣ a 1 , … , a m ∈ F } span(v_1,\dots,v_m)=\lbrace a_1v_1+\ldots+a_mv_m \mid a_1,\dots,a_m \in F \rbrace span(v1,,vm)={a1v1++amvma1,,amF}

  如果 s p a n ( v 1 , … , v m ) = V span(v_1,\dots,v_m)=V span(v1,,vm)=V,就称向量 v 1 , … , v m v_1,\dots,v_m v1,,vm展开成 V V V

   s p a n ( v 1 , … , v m ) span(v_1,\dots,v_m) span(v1,,vm)一定是 V V V的子空间

  如果一个向量空间由有限个向量展开而得,就说它是有限维度的(Finite-dimensional)

   ∀ λ i ∈ F 且 λ i ≠ 0 , s p a n ( λ 1 v 1 , … , λ m v m ) = s p a n ( v 1 , … , v m ) \forall \lambda_i\in F且\lambda_i\neq 0,span(\lambda_1v_1,\dots,\lambda_mv_m)=span(v_1,\dots,v_m) λiFλi=0,span(λ1v1,,λmvm)=span(v1,,vm)

   s p a n ( v 1 + v 2 , v 2 + v 3 , v 3 + v 4 , … , v m ) = s p a n ( v 1 , … , v m ) span(v_1+v_2,v_2+v_3,v_3+v_4,\dots,v_m)=span(v_1,\dots,v_m) span(v1+v2,v2+v3,v3+v4,,vm)=span(v1,,vm)

多项式函数

   p ( z ) = a 0 + a 1 z + a 2 z 2 + ⋯ + a m z m p(z) = a_0+a_1z+a_2z^2+\dots+a_mz_m p(z)=a0+a1z+a2z2++amzm
  如果一个函数 p : F → F p:F \to F p:FF可以表示在如上形式,其中 a 0 , … , a m ∈ F a_0, \ldots, a_m \in F a0,,amF,则我们称他为一个系数在F上的多项式函数(Polynomial)
   P ( F ) P(F) P(F)就是所有系数在F上的多项式函数组成的集合
  使用函数集合上的加法和数乘的定义,则 p ( F ) p(F) p(F)是一个向量空间

  多项式函数的非零自变量的最高次m,称为它的度(degree)
  恒为零的多项式函数,定义它的度为 − ∞ -\infty
   P m ( F ) P_m(F) Pm(F)是所有度小于等于m的多项式函数的集合

线性独立

  向量空间 V V V上的向量 v 1 , … , v m v_1,\ldots,v_m v1,,vm是线性独立的(Linear Independent)的当且仅当方程 a 1 v 1 + ⋯ + a m v m = 0 , a 1 , … , a m ∈ F a_1v_1+\dots+a_mv_m=0, a_1,\dots,a_m\in F a1v1++amvm=0,a1,,amF只有一个全零解 a 1 = ⋯ = a m = 0 a_1=\dots=a_m=0 a1==am=0,否则称为线性依赖的(Linear Dependent)

  一些线性独立的实例

  • 两个向量是线性独立的当且仅当其中任意一个都不是另一个的数乘结果
  • P ( F ) P(F) P(F)上的向量 1 , z , … , z m 1, z,\dots,z^m 1,z,,zm是线性独立的

线性独立、线性依赖的一些推论

  • 向量空间 V V V上的 v 1 , … , v m v_1,\ldots,v_m v1,,vm是线性依赖的,则存在一个 j ∈ { 1 , 2 , … , m } j \in \lbrace1,2,\dots,m\rbrace j{1,2,,m}同时满足以下两点 v j ∈ s p a n ( v 1 , … , v j − 1 ) v_j\in span(v_1, \dots, v_{j-1}) vjspan(v1,,vj1) s p a n ( v 1 , … , v j − 1 , v j + 1 , … , v m ) = s p a n ( v 1 , … , v m ) span(v_1, \dots, v_{j-1},v_{j+1},\dots,v_m)=span(v_1,\dots,v_m) span(v1,,vj1,vj+1,,vm)=span(v1,,vm)

  • 向量空间 V V V上的 v 1 , … , v m v_1,\ldots,v_m v1,,vm是线性独立的, ∀ λ i ∈ F 且 λ i ≠ 0 , i = 1 , … , m , ( λ 1 v 1 , … , λ m v m ) \forall \lambda_i \in F且\lambda_i\neq0,i=1,\dots,m,(\lambda_1v_1,\dots,\lambda_mv_m) λiFλi=0,i=1,,m,(λ1v1,,λmvm)仍是线性独立的。(也适用线性依赖)

  • 向量空间 V V V上的 v 1 , … , v m v_1,\ldots,v_m v1,,vm是线性独立的, ( v 1 + v 2 , v 2 + v 3 , v 3 + v 4 , … , v m ) (v_1+v_2,v_2+v_3,v_3+v_4,\dots,v_m) (v1+v2,v2+v3,v3+v4,,vm)仍是线性独立的。

线性独立、展开、维度的一些推论

  • 有限维度的向量空间中,任意一个线性独立的向量组的长度都小于等于任意一个展开组的长度(展开到这个向量空间)

  • 有限维度的向量空间的子空间也是有限维度的

  • 向量空间是无限维当且仅当 V V V上存在一个无限长的线性独立的向量组

  • 向量空间 V V V上的 v 1 , … , v m v_1,\ldots,v_m v1,,vm是线性独立的,现有 w ∈ V w \in V wV,则 v 1 , … , v m , w v_1,\ldots,v_m,w v1,,vm,w是线性独立的当且仅当 w ∉ s p a n ( v 1 , … , v m ) w \notin span(v_1,\ldots,v_m) w/span(v1,,vm)

  • 向量空间 V V V上的 v 1 , … , v m v_1,\ldots,v_m v1,,vm是线性独立的,现有 w ∈ V w \in V wV,则 v 1 + w , … , v m + w v_1+w,\ldots,v_m+w v1+w,,vm+w是线性独立的当且仅当 w = 0 或 w ∉ s p a n ( v 1 , … , v m ) w=0或w\notin span(v_1,\ldots,v_m) w=0w/span(v1,,vm)

  向量空间 V V V的基(Base)就是一组线性独立的、展开成 V V V的向量组
  比如, 1 , z , z 2 , … , z m 1,z,z^2,\dots,z^m 1,z,z2,,zm就是 P m ( F ) P_m(F) Pm(F)一个基

  关于基有以下的推论(都是面向有限维度的向量空间 V V V

   V V V中的 v 1 , … , v m v_1,\dots,v_m v1,,vm是其的一个基当且仅当 ∀ v ∈ V , ∃ a 1 , … , a m ∈ F , v = a 1 v 1 + ⋯ + a m v m \forall v \in V,\exist a_1,\dots,a_m \in F,v=a_1v_1+\dots+a_mv_m vV,a1,,amF,v=a1v1++amvm,且是 v v v的唯一表达

  同一个向量空间的不同的基是等长的

  展开成 V V V的向量组可缩减成一个基(删掉其中某些向量)

   V V V中的任意一个线性独立的向量组可扩充成一个基

   V V V的任意一个子空间 U U U都存在一个对应的子空间 W W W,使得它们的直和为 V V V(事实上,将 U U U的基扩充成 V V V的基,多出来的向量组就是 W W W的基)

   V V V的两个子空间的直和为 V V V,则它们分别的基组合起来就是 V V V的基

维度

  向量空间 V V V的维度被定义为任意一个基的长度,记为dim V V V

  以下是维度的推论

  • W W W是有限维度的向量空间 V V V的子空间,则有dim U ≤ U\leq Udim V V V

  • V V V内长度为dim V V V且线性独立的向量组是 V V V的一个基

  • 长度为dim V V V且展开成 V V V的向量组是 V V V的一个基

  • U 1 , U 2 U_1,U_2 U1,U2是有限维度的向量空间 V V V的子空间,则有 d i m ( U 1 + U 2 ) = d i m ( U 1 ) + d i m ( U 2 ) − d i m ( U 1 ∩ U 2 ) dim(U_1+U_2)=dim(U_1)+dim(U_2)-dim(U_1\cap U_2) dim(U1+U2)=dim(U1)+dim(U2)dim(U1U2)

  • 向量空间 V V V v 1 , … , v m v_1,\dots,v_m v1,,vm是线性独立的, w ∈ V w \in V wV,则有 d i m   s p a n ( v 1 + w , … , v m + w ) ≥ m − 1 dim\ span(v_1+w,\dots,v_m+w)\ge m-1 dim span(v1+w,,vm+w)m1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值