鲁棒设计与SIMULINK与蒙特卡洛模拟与系统不确定性

本文探讨了在MATLAB与SOLIDWORK集成环境下,通过Monte Carlo模拟方法来优化机电系统设计的过程,特别是在面对众多不确定因素时,如何通过参数估计、参数变异模拟等手段,有效评估系统性能,并在设计过程中不断迭代改进,最终实现鲁棒设计的目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文属MATLAB与SOLIDWORK集成机电系统仿真与实现系列文章

MATLAB与SOLIDWORK集成机电系统仿真与实现1(原创)相关的文章中,比如用SIMULINK协助选择测试仪表1(原创) 等文章,使用了和本文不同的方法来获得一些技术设计参数,那里的方法涉及了更复杂的内容(针对系列对象),在使用那些方法的过程中,的确可以锻炼一些SIMULINK操作的一些技能,而本文所提到的使用蒙特卡洛模拟方法,针对一个对象,所以操作起来相对简单。设计过程中,对系统的认识和改进是在不断交替进行,这个过程相比一开始就用实物原型来验证设计比较理智,我遇到一个项目,影响系统最终性能的因素随便数一数有几十个,其实搞到后面,没有人能用数据回答这些因素中,那个因素影响较大,那个因素影响较小,可以想象,从哪改进才是合理的混乱场面。

为了解决该问题,我想有几个问题常常相互交织在一起,1.优化 2.参数估计 3.参数的变异模拟。这些过程相互关联,只有经过来回折腾,才会得到每个问题的最终答案。下面还是用DC电机的模型来做蒙特卡洛模拟,以便了解被控制的对象特性,其实这个方法是经常要用到的,比如在完成控制系统设计后,对闭环系统进行评估同样要用。关于这些想法,我会联想到一些特别的技术领域,比如所谓的数据挖掘、模式分类、数据可视化技术等 ,尽管这里不会那么做得那么复杂,只是提醒自己如何把这些知识体系关联起来并深入下去,从简单看到复杂通常伴随着一个了不起的思想的诞生,这里说的是那些划时代人物的思想,其实很多仅仅是一句话,结果其内涵的深邃一般人是难以想象的。

鲁棒设计要解决的问题其实就是以小的代价获得性能可靠而有竞争力的技术设计,系统的参数不必过于保守,也不能达不到要求,在系统设计环节里,可以不断的用蒙特卡洛模拟来评估子系统在系统参数变异的情况下,子系统的性能或着质量特征是否在要求的范围之内,如果参数的变异满足要求,那么就开始计参数选择的工艺,这个工艺最起码是两方面的,一是新元件的变异余量,二是与元件寿命方面的变异余量,如果满足不了要求,那么用该模拟方法得到的数据找出哪个参数是最重要的,哪个是次要的,根据这一规则,来控制系统参数设计。值的注意的是,如果对实验设计有不错的经验,蒙特卡洛模拟并不是最好的方法。

在掌握了 用SIMULINK协助选择测试仪表3(原创)的测试建模技巧后,这里不过多谈论模型的细节,唯一不同的就是SIMULINK的SystemTest tool里可以很容易的对模型的系统参数构造为一个随机分布的测试向量,这种分布可以是多种多样的,只要MATLAB安装了统计工具箱,当然一般把系统的参数变异按高斯分布来处理。另外,在这种认识系统特性的过程中,统计工具里的散布图,相关图,排序图,直方图是常用的工具,务必熟练使用。而对那些不能明显看到是对系统性能产生了变异的内容,那么需要用到统计工具箱内的方差分析,假设检验,多维度分析等更多精彩的内容。在技术系统的设计中,把统计学引入到整个设计过程中在设计意识上是本质性的,所以那些确定性的方程仅仅只仅仅解决了一小部分问题。其实对于任意一个系统,它的输入和参数的变异,使得系统的性能参数呈现某种分布,所以实质上控制的设计也归结为一个分类问题,也就是说,系统性能的分类通过控制输入和参数的变异被有效的控制住。

 待续。。。

本文转载自李会先博客http://foundy.blog.163.com/blog/static/2633834420103259638540/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值