opencv中Mat格式的数据点访问at


发现Mat类中的at方法对于获取图像矩阵某点的RGB值或者改变某点的值很方便,对于单通道的图像,则可以使用:

[cpp]  view plain  copy
  1. image.at<uchar>(i, j)

来获取或改变该点的值,而RGB通道的则可以使用:

[cpp]  view plain  copy
  1. image.at<Vec3b>(i, j)[0]  
  2. image.at<Vec3b>(i, j)[1]  
  3. image.at<Vec3b>(i, j)[2]

来分别获取B、G、R三个通道的对应的值。下边的代码实现对图像加椒盐噪声:

[cpp]  view plain  copy
  1. #include<opencv2\opencv.hpp>  
  2. using namespace cv;  
  3. using namespace std;  
  4.   
  5. void salt_noise(Mat image, int time)  
  6. {  
  7.     for (int k = 0; k < time; k++)//time is the number of the noise you add  
  8.     {  
  9.         int i = rand() % image.rows;  
  10.         int j = rand() % image.cols;  
  11.         if (image.channels() == 1)//single channel  
  12.         {  
  13.             image.at<uchar>(i, j) = rand() % 255;  
  14.         }  
  15.         else if (image.channels() == 3)//RGB channel  
  16.         {  
  17.             image.at<Vec3b>(i, j)[0] = rand() % 255;  
  18.             image.at<Vec3b>(i, j)[1] = rand() % 255;  
  19.             image.at<Vec3b>(i, j)[2] = rand() % 255;  
  20.         }  
  21.     }  
  22. }  
  23.   
  24. int main(void)  
  25. {  
  26.     Mat image = imread("..\\lena.bmp", 0);  
  27.     if (image.empty())  
  28.     {  
  29.         cout << "load image error" << endl;  
  30.         return -1;  
  31.     }  
  32.     salt_noise(image, 3000);  
  33.     namedWindow("image", 1);  
  34.     imshow("image", image);  
  35.   
  36.     waitKey();  
  37.     return 0;  
  38. }

不过貌似用at取值或改变值来做比较耗时,当然我们还可以使用Mat的模板子类Mat_<T>,,对于单通道的具体使用:

[cpp]  view plain  copy
  1. Mat_<uchar> img = image;  
  2. img(i, j) = rand() % 255;
 对于RGB通道的使用:

[cpp]  view plain  copy
  1. Mat_<Vec3b> img = image;  
  2. img(i, j)[0] = rand() % 255;  
  3. img(i, j)[1] = rand() % 255;  
  4. mg(i, j)[2] = rand() % 255;

还可以用指针的方法遍历每一像素:(耗时较小)

[cpp]  view plain  copy
  1. void colorReduce(Mat image, int div = 64)  
  2. {  
  3.     int nrow = image.rows;  
  4.     int ncol = image.cols*image.channels();  
  5.     for (int i = 0; i < nrow; i++)  
  6.     {  
  7.         uchar* data = image.ptr<uchar>(i);//get the address of row i;  
  8.         for (int j = 0; j < ncol; j++)  
  9.         {  
  10.             data[i] = (data[i] / div)*div ;  
  11.         }  
  12.     }  
  13. }

OpenCV(Open Source Computer Vision Library)是一个广泛使用的计算机视觉库,提供了许多处理图像和视频的功能。在OpenCVMat是一种常用的数据结构,用于存储和操作图像和矩阵数据Mat是一个多维数组,可以表示灰度图像、彩色图像、深度图像等。它由数据指针、行数、列数、通道数和其他一些元数据组成。 在OpenCVMat数据类型可以是8位、16位、32位浮型或64位浮型。对于灰度图像,通常使用单通道的Mat表示,而对于彩色图像,则使用3通道(BGR顺序)的Mat。 你可以通过以下代码创建一个Mat对象并访问数据: ```cpp #include <opencv2/opencv.hpp> int main() { cv::Mat image; // 创建一个空的Mat对象 // 从文件加载图像 image = cv::imread("image.jpg"); // 访问图像数据 int rows = image.rows; // 获取图像的行数 int cols = image.cols; // 获取图像的列数 int channels = image.channels(); // 获取图像的通道数 // 遍历图像 for (int i = 0; i < rows; i++) { for (int j = 0; j < cols; j++) { // 访问像素值 cv::Vec3b pixel = image.at<cv::Vec3b>(i, j); // 对像素进行操作 pixel[0] = 255; // 修改蓝色通道值为255 // 更新像素值 image.at<cv::Vec3b>(i, j) = pixel; } } // 保存图像 cv::imwrite("modified_image.jpg", image); return 0; } ``` 这是一个简单的示例,展示了如何创建、加载、访问和保存图像数据Mat对象的数据可以通过at()方法访问,其指定了要访问的像素的行和列。对于彩色图像,可以使用Vec3b类型的对象来表示每个像素的值,其每个通道的值由0到255的整数表示。 希望这能帮到你!如果还有其他问题,请随时问。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值