DeepSeek - V2.5:全新开源模型,融合通用与代码能力


引言

在人工智能领域,不断有新的模型涌现,为各种任务带来更高效、更智能的解决方案。近期杭州深度求索人工智能推出的DeepSeek - V2.5模型引起了广泛的关注。这个模型在继承和融合前代模型优势的基础上,展现出了许多独特的性能和功能特性。无论是在通用能力、代码处理能力,还是模型安全性方面,DeepSeek - V2.5都有着值得深入探究的表现。本文将对DeepSeek - V2.5进行全面的剖析,涵盖其基本概述、功能特点、性能测试表现、代码部署推理实践以及相关资料地址等方面。
在这里插入图片描述

一、DeepSeek - V2.5简介

DeepSeek - V2.5是由deepseek - v2 - chat和deepseek - coder - v2两个模型合并升级而来的一款人工智能模型。这种合并升级的方式赋予了DeepSeek - V2.5独特的能力组合,使其在多种任务场景下都能发挥重要作用。它既融合了chat模型的通用对话能力,能够应对各种自然语言处理相关的交互任务,又具备coder模型强大的代码处理能力,为编程相关的任务提供了有力支持。
在这里插入图片描述

二、DeepSeek - V2.5功能特点

1、强大的通用能力

DeepSeek - V2.5在通用能力方面表现出色。在业界通用的测试集中,无论是中文还是英文测试集,它都展现出了优于之前版本的性能。在与其他知名模型如gpt - 4omini、chatgpt - 4o - latest的对比测评中(以gpt - 4o作为裁判),其对战胜率相较于之前的deepseek - v2 - 0628版本有显著提升。这表明DeepSeek - V2.5在理解和处理自然语言、回答各种类型的问题方面有了很大的进步,能够更好地满足用户在不同领域的需求。

2、强化的安全能力

在模型安全方面,DeepSeek - V2.5做出了显著的改进。它对安全问题的边界进行了更清晰的划分,这有助于准确识别和处理可能存在安全风险的输入内容。同时,该模型强化了对各种越狱攻击的安全性,有效防止恶意用户通过特殊手段绕过模型的安全限制。并且,它减少了安全策略过度泛化到正常问题中的情况,这意味着在保证安全的前提下,不会对正常的用户交互产生过多不必要的限制,从而提高了用户体验。

3、出色的代码能力

作为融合了代码处理能力的模型,DeepSeek - V2.5在代码相关任务上表现卓越。它保留了deepseek - coder - v2 - 0724强大的代码能力,在代码生成和处理的测试中取得了显著的成绩。例如,在humaneval python和live code bench(2024年1月 - 2024年9月)测试中,相较于之前版本有明显的改进。在内部的主观评测ds - arena - code中,以gpt - 4o为裁判对战竞品时,胜率得到了显著提升。在fim补全任务上,内部评测集ds - fim - eval的评分提升了5.1%,这一提升能够为插件补全带来更好的体验,表明其在代码补全和优化方面的能力得到了进一步增强。

4、长上下文处理与多功能支持

1)强大的上下文处理能力
DeepSeek - V2.5拥有128k的上下文长度,这一特性使其能够轻松处理大量、复杂的输入信息。在处理长文档、多轮对话或者复杂的代码结构等任务时,长上下文处理能力是一个关键优势。它能够更好地理解输入内容中的各种逻辑关系,从而生成更准确、更合理的回复或输出。
2)多功能支持
该模型支持功能调用、json输出生成以及填充式生成(fim completion)等功能。功能调用使得模型能够与外部系统或工具进行交互,扩展了其应用范围;json输出生成对于需要以特定格式(如数据交换格式)进行数据处理的任务非常有用;填充式生成则进一步增强了模型在代码补全和文本生成中的灵活性,为用户提供了更多样化的输出选择。

三、性能测试

1、通用能力测评指标

  1. 在arenahardwinrate方面,DeepSeek - V2.5从之前的68.3%提升至76.2%,这一显著提升表明在处理具有挑战性的任务时,模型的准确性和有效性有了很大的提高。
  2. alpacaeval2.0的lcwinrate从46.6提升至50.5,反映出在相关评估标准下,模型的性能得到了优化,能够更好地满足评估要求。
  3. mt - bench分数从8.85提升至9.02,这一分数的增长体现了模型在多任务处理方面的能力提升。
  4. alignbench分数从7.88提升至8.04,说明模型在与特定标准或目标的对齐方面表现更好,能够更精准地按照预期进行输出。
    在这里插入图片描述

2、代码能力测试指标

  1. 在humaneval的测试中,DeepSeek - V2.5达到89%的通过率,这一高通过率显示了其在代码生成任务中的高效性和准确性,能够生成符合要求的高质量代码。
  2. 在livecodebench(1 - 9月)测试中达到41.8%的通过率,进一步证明了它在处理实际代码任务中的能力,尤其是在较长时间段内的各种不同类型代码任务的处理能力。
    在这里插入图片描述

四、部署推理实践

由于DeepSeek - V2.5与transformers框架完全兼容,这使得它在各种环境中的部署变得相对容易。开发人员可以利用现有的基于transformers框架的基础设施和工具链,快速将DeepSeek - V2.5集成到自己的应用程序中。无论是在本地开发环境、服务器端,还是在云平台上进行部署,都能够较为顺利地进行。

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/DeepSeek-V2.5"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# `max_memory` should be set based on your devices
max_memory = {i: "75GB" for i in range(8)}
# `device_map` cannot be set to `auto`
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

messages = [
    {"role": "user", "content": "Write a piece of quicksort code in C++"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)

五、相关资料地址

DeepSeek - V2.5已开源到了huggingface平台,可以在huggingface上获取到模型的相关文件、文档以及示例代码等资料。
https://huggingface.co/deepseek-ai/DeepSeek-V2.5

结语

DeepSeek - V2.5作为一款融合了多种能力且性能卓越的人工智能模型,在通用能力、代码处理、安全性能等多个方面都展现出了强大的实力。它的性能测试表现优秀,在各种评估指标上都有明显的提升,这为其在不同领域的应用提供了坚实的基础。在代码部署推理实践方面,其与transformers框架的兼容性以及多种优化策略使其能够在不同环境中高效运行。同时,开源到huggingface平台也为广大开发者提供了深入研究和应用的机会。随着人工智能技术的不断发展,我们期待DeepSeek - V2.5能够在更多的应用场景中发挥重要作用,为自然语言处理和编程等领域带来更多的创新和突破。

在这里插入图片描述

🎯🔖更多专栏系列文章:AI大模型提示工程完全指南AI大模型探索之路(零基础入门)AI大模型预训练微调进阶AI大模型开源精选实践AI大模型RAG应用探索实践🔥🔥🔥 其他专栏可以查看博客主页📑

😎 作者介绍:我是寻道AI小兵,资深程序老猿,从业10年+、互联网系统架构师,目前专注于AIGC的探索。
📖 技术交流:欢迎关注【小兵的AI视界】公众号或扫描下方👇二维码,加入技术交流群,开启编程探索之旅。
💘精心准备📚500本编程经典书籍、💎AI专业教程,以及高效AI工具。等你加入,与我们一同成长,共铸辉煌未来。
如果文章内容对您有所触动,别忘了点赞、⭐关注,收藏!加入我,让我们携手同行AI的探索之旅,一起开启智能时代的大门!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

寻道AI小兵

🐳 感谢你的巨浪支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值