迁移学习了解

概念解释

​迁移学习(Transfer Learning),从相似性出发,识别苹果的模型可以用来识别梨子,学习电子琴有助于学习弹钢琴。

​找到目标问题的相似性,迁移学习任务就是从相似性出发,将旧领域(domain)学习过的模型(model)应用在新领域(new_domain)上。

用来解决什么问题?

1、数据标注问题,大量数据进行人工标注需要消耗大量时间和成本​,可以借助迁移学习进行数据标注;

2、降低计算成本,大量的数据对硬件配置要求较高,很多人没有足够牛的计算资源,需要借助于迁移模型;

3、不同模型和需求间的适配​。

在这里插入图片描述

迁移学习和传统机器学习的区别

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI1.0

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值