概念解释
迁移学习(Transfer Learning),从相似性出发,识别苹果的模型可以用来识别梨子,学习电子琴有助于学习弹钢琴。
找到目标问题的相似性,迁移学习任务就是从相似性出发,将旧领域(domain)学习过的模型(model)应用在新领域(new_domain)上。
用来解决什么问题?
1、数据标注问题,大量数据进行人工标注需要消耗大量时间和成本,可以借助迁移学习进行数据标注;
2、降低计算成本,大量的数据对硬件配置要求较高,很多人没有足够牛的计算资源,需要借助于迁移模型;
3、不同模型和需求间的适配。
迁移学习和传统机器学习的区别