Llama + Dify,在你的电脑搭建一套AI工作流

本文简介

最近字节在推Coze,你可以在这个平台制作知识库、制作工作流,生成一个具有特定领域知识的智能体。

那么,有没有可能在本地也部署一套这个东西呢?这样敏感数据就不会泄露了,断网的时候也能使用AI。

刚好最近 Llama 3.1 发布了,本文就以 Llama 3.1 作为基础模型,配合 Dify 在本地搭建一套“Coze”。

跟着本文一步步操作,保证能行!

Dify是什么?

Dify 官网(difyai.com/) 的自我介绍:Dify 是开源的 LLM 应用开发平台。提供从 Agent 构建到 AI workflow 编排、RAG 检索、模型管理等能力,轻松构建和运营生成式 AI 原生应用。比 LangChain 更易用。

动手搭建

在本地搭建这个平台很简单,其实 Dify文档(docs.dify.ai/v/zh-hans) 里都写得明明白白了,而且还有中文文档。

具体来说需要做以下几步:

  1. 安装 Ollama
  2. 下载大模型
  3. 安装 Docker
  4. 克隆 Dify 源代码至本地
  5. 启动 Dify
  6. 配置模型

接下来一步步操作。

安装 Ollama

简单来说 Ollama 是运行大语言模型的环境,这是 Ollama 的官网地址 (ollama.com/ ),打开它,点击 Download 按钮下载 Ollama 客户端,然后傻瓜式安装即可(一直点“下一步”)。

安装完成后就能看到一个羊驼的图标,点击运行它即可。

下载大模型

安装完 Ollama 后,我们到 Ollama 官网的模型页面(ollama.com/library)挑选一下模型。

这里面有很多开源模型,比如阿里的千问2,搜索 qwen2 就能找到它。

本文使用 Llama 3.1 ,这是前两天才发布的模型,纸面参数贼强。

打开 Llama 3.1 模型的地址(ollama.com/library/lla…),根据你需求选择合适的版本,我选的是 8b 版。

选好版本后,复制上图右侧红框的命令,到你电脑的终端中运行。

如果你还没下载过这个模型它就会自动下载,如果已经下载过它就会运行这个模型。

运行后,你就可以在终端和大模型对话了。

当然,我们不会这么原始的在终端和大模型对话,我们可是要搞工作流的!

安装 Docker

前面的基础步骤都搞掂了,接下来就要开始为运行 Dify 做准备了。

先安装一下 Docker ,打开 Docker 官网(www.docker.com/),根据你系统下载对应的安装包,然后还是傻瓜式安装即可。

克隆 Dify 源代码至本地

要使用 Dify ,首先要将它拉到你电脑里。

git clone https://github.com/langgenius/dify.git

在你电脑里找个位置(目录),用 gitDify 克隆下来,用上面这条命令克隆就可以了。

启动 Dify

进入 Dify 源代码的 docker 目录,执行一键启动命令:

cd dify/docker
cp .env.example .env
docker compose up -d

启动完成后,你的 docker 里就会看到这个

此时你在浏览器输入 http://localhost 就能看到这个界面。

首次打开 Dify 需要你设置一下管理员的账号。

然后用管理员账号登录,可以看到下面这个页面。

点击“创建空白应用”就可以创建聊天助手、文本生成应用、Agent、工作流。

我们点击"工作流"就能看到类似Coze的工作流编辑界面了。

配置模型

在配置工作流之前,我们需要给 Dify 配置大语言模型。

点击页面右上角的管理员头像,然后选择“设置”。

选择“模型供应商”,然后点击“Ollama”的卡片添加模型。

在添加 Ollama 模型时,弹窗的左下角有一个“如何继承 Ollama”的按钮,点击它会跳转到 Dify 官方文档教你怎么配置,但这里可能会有个小坑。

前面我们已经使用 OllamaLlama 3.1 运行起来了,在浏览器打开 `http://localhost:11434 看到这个界面证明模型运行成功。

此时在“添加 Ollama”将资料填写好,“基础 URL”里输入 http://localhost:11434 即可。

如果你是 Mac 电脑,填入以上资料有可能会报这个错:

An error occurred during credentials validation: HTTPConnectionPool(host='localhost', port=11434): Max retries exceeded with url: /api/chat (Caused by NewConnectionError('<urllib3.connection.HTTPConnection object at 0xffff5e310af0>: Failed to establish a new connection: [Errno 111] Connection refused'))

此时你需要在“基础 URL”里填入 http://host.docker.internal:11434

遇到问题可以看 Dify 官方文档的 FAQ。

添加完成后你就可以在模型列表里看到它了。

除了接入 Ollama 外,Dify 还支持接入 OpenAI 等闭源模型,但需要你去 OpenAI 那边买个服务。


如何系统的去学习大模型LLM ?

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的 AI大模型资料 包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来

😝有需要的小伙伴,可以V扫描下方二维码免费领取🆓
在这里插入图片描述

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

在这里插入图片描述

四、AI大模型商业化落地方案

img

阶段1:AI大模型时代的基础理解

  • 目标:了解AI大模型的基本概念、发展历程和核心原理。
  • 内容
    • L1.1 人工智能简述与大模型起源
    • L1.2 大模型与通用人工智能
    • L1.3 GPT模型的发展历程
    • L1.4 模型工程
      - L1.4.1 知识大模型
      - L1.4.2 生产大模型
      - L1.4.3 模型工程方法论
      - L1.4.4 模型工程实践
    • L1.5 GPT应用案例

阶段2:AI大模型API应用开发工程

  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
  • 内容
    • L2.1 API接口
      - L2.1.1 OpenAI API接口
      - L2.1.2 Python接口接入
      - L2.1.3 BOT工具类框架
      - L2.1.4 代码示例
    • L2.2 Prompt框架
      - L2.2.1 什么是Prompt
      - L2.2.2 Prompt框架应用现状
      - L2.2.3 基于GPTAS的Prompt框架
      - L2.2.4 Prompt框架与Thought
      - L2.2.5 Prompt框架与提示词
    • L2.3 流水线工程
      - L2.3.1 流水线工程的概念
      - L2.3.2 流水线工程的优点
      - L2.3.3 流水线工程的应用
    • L2.4 总结与展望

阶段3:AI大模型应用架构实践

  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
  • 内容
    • L3.1 Agent模型框架
      - L3.1.1 Agent模型框架的设计理念
      - L3.1.2 Agent模型框架的核心组件
      - L3.1.3 Agent模型框架的实现细节
    • L3.2 MetaGPT
      - L3.2.1 MetaGPT的基本概念
      - L3.2.2 MetaGPT的工作原理
      - L3.2.3 MetaGPT的应用场景
    • L3.3 ChatGLM
      - L3.3.1 ChatGLM的特点
      - L3.3.2 ChatGLM的开发环境
      - L3.3.3 ChatGLM的使用示例
    • L3.4 LLAMA
      - L3.4.1 LLAMA的特点
      - L3.4.2 LLAMA的开发环境
      - L3.4.3 LLAMA的使用示例
    • L3.5 其他大模型介绍

阶段4:AI大模型私有化部署

  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
  • 内容
    • L4.1 模型私有化部署概述
    • L4.2 模型私有化部署的关键技术
    • L4.3 模型私有化部署的实施步骤
    • L4.4 模型私有化部署的应用场景

学习计划:

  • 阶段1:1-2个月,建立AI大模型的基础知识体系。
  • 阶段2:2-3个月,专注于API应用开发能力的提升。
  • 阶段3:3-4个月,深入实践AI大模型的应用架构和私有化部署。
  • 阶段4:4-5个月,专注于高级模型的应用和部署。
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

LLaMA+Alpaca是一个基于PyTorch的自然语言处理框架,主要用于生成式对话模型的训练和部署。以下是搭建、部署、训练LLaMA+Alpaca的步骤: 1. 安装依赖项:在安装LLaMA+Alpaca之前需要安装以下依赖项: - Python 3.7或更高版本 - PyTorch 1.7或更高版本 - Transformers 4.0或更高版本 - Flask 2. 下载代码:可以从LLaMA+Alpaca的GitHub页面上下载代码,也可以使用以下命令从GitHub上克隆代码: ``` git clone https://github.com/microsoft/LLaMA.git ``` 3. 部署:可以使用以下命令启动LLaMA+Alpaca的部署: ``` cd LLaMA/deployment python app.py ``` 这将会在本地启动一个Flask服务器并提供对话API。 4. 训练模型:可以使用以下命令在LLaMA+Alpaca上训练对话模型: ``` python train.py \ --dataset_path <path-to-dataset> \ --tokenizer_name <tokenizer-name> \ --model_name_or_path <model-name-or-path> \ --output_dir <output-dir> \ --num_train_epochs <num-epochs> \ --per_device_train_batch_size <batch-size> \ --gradient_accumulation_steps <accumulation-steps> \ --learning_rate <learning-rate> ``` 其中,\<path-to-dataset>是对话数据集的路径,\<tokenizer-name>和\<model-name-or-path>分别是使用的tokenizer和模型名称或路径,\<output-dir>是输出路径,\<num-epochs>是训练的epoch数,\<batch-size>是每个GPU上的批量大小,\<accumulation-steps>是梯度累积步骤数,\<learning-rate>是学习率。 5. 部署新模型:可以使用以下命令将新训练的模型部署到Flask服务器上: ``` python update_model.py \ --model_path <path-to-model> \ --tokenizer_name <tokenizer-name> \ --model_name <model-name> ``` 其中,\<path-to-model>是新训练的模型路径,\<tokenizer-name>是使用的tokenizer名称,\<model-name>是新模型名称。 以上就是搭建、部署、训练LLaMA+Alpaca的步骤。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值