AI 的“知识焦虑”
很多时候,即使是最强大的 AI 模型,在面对复杂问题时也会显得力不从心?它们仿佛拥有惊人的记忆力,却无法真正理解知识背后的逻辑和关联。这就像一个学霸,背诵了无数知识点,却难以灵活运用。
原因在于,传统的 AI 模型(例如大模型)处理信息的方式,通常是将数据视为孤立的个体。它们无法像人类一样,自然而然地捕捉到数据之间的关系,而这种关系正是理解知识的关键。
为了解决这个问题,所以 GraphRAG ,它来了。通过将图结构引入了 AI 的知识获取过程。
什么是 GraphRAG?
GraphRAG,全称 Graph Retrieval-Augmented Generation,即基于图结构的检索增强生成。简单来说,它是一种让 AI 模型从外部知识库中检索相关信息,并将其融入自身知识体系的技术。
所以,GraphRAG 与传统的 RAG 之间有何不同呢?
关键区别:从文本到图
-
传统 RAG:
-
将知识存储为文本片段(例如句子、段落)。
-
基于关键词或语义相似度进行检索。
-
检索结果通常是孤立的文本块。
-
不擅长处理隐含关系、多跳推理等复杂逻辑。
-
GraphRAG:
-
将知识存储为图结构,节点代表实体(例如概念、对象),边代表实体之间的关系。
-
基于图的结构和语义进行检索,如实体链接、关系匹配、图遍历等。
-
检索结果是包含复杂关系的图结构,可以灵活组合。
-
更擅长处理关系推理、长程依赖、和多步规划等复杂逻辑。
你可以把 GraphRAG 看作一个聪明的知识管理员,它不仅知道每个知识点的名称,还知道它们之间的关系,并能根据你的需求,快速找到最相关的知识脉络。
GraphRAG 的核心组件:构建知识高速公路
GraphRAG 的实现并非一蹴而就,它需要一系列关键组件的协同工作:
- Query Processor(查询处理器):
-
将用户的自然语言查询转化为适合图检索的形式。
-
使用诸如实体识别、关系提取等技术,从查询中提取关键实体和关系。
- Graph Data Source(图数据源):
-
存储结构化的知识图谱,可以是知识图谱、文档图、社交图等多种形式。
-
根据不同的应用场景,知识的表示方式也会有所不同,比如药物分子结构、产品分类结构等。
- Retriever(检索器):
-
根据查询处理器提取的信息,从图数据源中检索相关的节点、边和子图。
-
使用图遍历、嵌入匹配等技术,确保检索到的内容具有较高的相关性和结构性。
- Organizer(组织器):
-
对检索到的内容进行精炼、排序和重组。
-
使用图剪枝、重排序、增强等技术,确保检索结果更适合生成器的使用。
- Generator(生成器):
-
利用组织器处理后的信息,生成最终的答案或内容。
-
可以采用 GNN、Transformer 等模型,确保生成的内容准确且连贯。
这些组件就像一条知识高速公路的各个关卡,协同工作,确保知识能够高效、准确地流动,最终到达 AI 的大脑。
GraphRAG 的应用场景:知识应用的无限可能
GraphRAG 的出现,为 AI 带来了更强大的知识应用能力,在许多领域都展现出巨大的潜力:
-
知识图谱问答:能够回答包含复杂关系的查询,例如“哪些药物可以治疗某种疾病,并且影响特定的基因”。
-
文档摘要和生成:能够理解文档之间的关联,生成更高质量的摘要或文章。
-
科学研究:能够辅助科学家发现新的药物、理解复杂的生物网络,加速科研进程。
-
社交网络分析:能够分析用户之间的关系,进行精准的用户画像和推荐。
-
规划和推理:能够理解事物之间的依赖关系,进行多步骤规划和复杂推理,例如实现机器人的复杂操作。
Agent 的力量:智能协作,灵活应变
值得一提的是,GraphRAG 可以与 agent 技术相结合,形成更强大的智能系统。Agent 具备自主行动、与环境交互和学习的能力。通过 GraphRAG,agent 可以获取丰富的知识,并利用图结构进行复杂推理,从而更加灵活和智能地完成任务。
挑战与展望:GraphRAG 的未来之路
虽然 GraphRAG 拥有巨大的潜力,但目前仍处于发展阶段,面临一些挑战:
-
图构建的复杂性:如何从不同类型的数据中构建高质量的图结构仍然是一个难题。
-
检索效率和准确性:如何在大规模图中进行高效、准确的检索仍然需要进一步研究。
-
多模态信息的融合:如何将文本、图像、音频等多种模态的信息融入图结构,也是一个重要的研究方向。
好了,这就是我今天想分享的内容。如果你对构建AI智能体感兴趣,别忘了点赞、关注噢~
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈